• Title/Summary/Keyword: wave form

Search Result 1,061, Processing Time 0.028 seconds

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

An Approximate Closed Form Representation of the Microstrip Dyadic Surface Green's Function (Mictrostrip Dyadic 표면 Green 함수의 근사표현식)

  • 최익권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.549-560
    • /
    • 1993
  • A simple closed form approximation is developed by a new approach presented in this paper for the microstrip surface dyadic Green's function which arises in the problem of an electric current point source on an infinite planar grounded dielectric substrate. This closed form approximation includes the effects of the space wave, the surface wave and their coupling within the transition region near the source, and remains accurate as near as $0.1{\pi}_1$ from the source point for a substrate thickness as large as $0.04{\pi}_1$, where, ${\pi}_1$, is the free space wavelength, This result can significantly facilitate the rigorous moment method analysis of microstrip antenna arrays on relatively this substrates of practical interest. Numerical results illustrating the accuracy of the closed form approximation are presented and CPU times associated with some mutual impedance calculations are also included.

  • PDF

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

An Experimental Study of Wave Overtopping Characteristics on the Structure for Wave Overtopping Power Generating System (월파형 파력발전구조물의 월파 특성에 관한 실험적 연구)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.649-655
    • /
    • 2006
  • Waves progressing into the coastal area can be amplified, swashed and overtopped by a wave overtopping control structure, and it converts the kinetic energy of the waves to the potential energy with a hydraulic head above the mean sea level by conserving the overflow in a reservoir. Then the potential energy in the form of hydraulic head can be converted to electric power utilizing extremely low-head hydraulic turbine. This study aims to find the most optimal shape of wave overtopping structure which maximizes overtopping volume rate of sea water. Laboratory experiments for the performance evaluation of wave overtopping control structures were carried out in three dimensional wave tank, and the three dimensional structure models with planar wave concentration shapes(B/b) were manufactured into five classes, which were optimized by cross sectional parameters of the structure, ie, length of ramp(l), gradient of inclined ramp($cot{\phi}$) and freeboard height of the wave overtopping structure($h_e$) proposed by Shin and Hong(2005). The wave overtopping discharges were investigated with 20 incident wave conditions and wave directions of $0^{\circ},\;15^{\circ},\;30^{\circ}$.

Characteristics of Wave Response in a 'Y' Shape Water Channel Resonator Using Resonance of Internal Fluid (내부유체 공진을 이용한 'Y'자 수로형 공명구조물내 파도응답 특성)

  • Kim, Jeongrok;Cho, Il Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2019
  • In this study, the wave responses in a 'Y'shape water channel resonator for amplifying wave energy of a low density has been investigated. A water channel resonator is composed of the long channel and wave guider installed at the entrance. If the period of the incident waves coincides with the natural period of the fluid in a water channel resonator, resonance occurs and the internal fluid amplifies highly to a standing wave form. In order to analyze the wave response in a water channel resonator, we used the matched asymptotic expansion method and boundary element method. The both results were in good agreement with the results of the model test carried out in the two-dimensional wave tank of Jeju National University. Wave guider has an optimum length and installation angle according to the period of the incident wave, and especially effective in enhancing the amplification factor in a period range deviated from the resonance period. It is expected that the wave energy can be effectively extracted by placing the point absorber wave energy converter at the position of anti-node where the maximum wave height is formed by the internal fluid resonance.

An Experimental Study on Hull Form Development and Anti-Rolling Tank Performance of G/T 360ton Class Fishery Patrol Ship (총톤수 360톤급 어업지도선의 선형개선 및 횡요감소장치 성능에 관한 실험적 연구)

  • Lee, Kwi-Joo;Joa, Soon-Won;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.245-250
    • /
    • 2003
  • Hull form development and Anti-rolling tank of G/T 360ton class fishery patrol ship was carried out in the CWC at Chosun university, cooperatively with WJFEL(The West Japan Fluid Engineering Laboratory). Same size of 15 knots class fishery patrol ship was selected as a parent form(Model number: CU-015), and modified fore and after body hull form under the slightly lengthened to be suitable for the operation at 20 knots. This paper investigated for a rolling performance and an effective using method when fishery patrol ship was equipped with anti-rolling tank. On several occasions of rolling test was made reference to design data of a similar ship. Although the hull form was highly constrained in being limited to modification of a parent hull form, significant wave resistance improvement was made.

  • PDF