• Title/Summary/Keyword: wave form

Search Result 1,054, Processing Time 0.032 seconds

Development of an Optimum Hull Form for a Container Ship with Minimum Wave Resistance (최소 조파저항을 가지는 컨테이너선의 선형최적화 기법에 대한 연구)

  • 최희종;서광철;김방은;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using B-spline surface patches. The optimization method is applied to Series 60 hull and KCS(KRISO 3600 TEU Container Ship). The obtained results prove that the method is appropriate for preliminary hull form design.

A Study on the Wave Type and the Damage of Hair according to Water content when Heat permanent is treated - Focus on Damaged Hair -

  • Lee, Soon-Hee;Choi, Jung-Myung
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.11-22
    • /
    • 2008
  • The goal of this study is to provide beauticians with the fundamental material to use effectively heat permanent wave in beauty industry as well as their customer's satisfaction. It carried out an experiment with damaged hair of a woman in her late twenties to investigate the change of physical and morphological characteristics by its water content when performing heat permanent wave. After spreading 0g, 1g, 2g, 3g, and 4g of water on damaged hair respectively, heat permanent wave was treated and the change of hair was observed. The change of physical characteristic was compared through permanent wave form of hair, tensile strength and elongation. The change of morphological characteristic was observed through Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). The result of experiment on the physical specificity revealed that permanent wave form was the most ideal when the water content was 2g, also 3g. Though the materials with much moisture content formed the results were not satisfied. The material with 0g of water content didn't make the wave. In terms of tensile strength and elongation, tensile strength was generally reduced as per the damaged degree of hair. On the contrary, elongation was increased. It observed the changes of morphological characteristic that the damage on hair cuticle was deepen, as its moisture content was decreased, and cuticle's surface was worn away. The observation of fine structure on hair section by transmission electronic microscope also certainly showed the result that damaged hair having experience with chemical treatment had got much damaged to hair cuticle as well as hair cortex. Generally chemical treatment makes hair damaged. Under consideration of this aspect, the ultimate goal of this thesis is to minimize the damage of hair caused by chemical treatment and get the satisfaction on the hair style. According to the result of experiment, the damaged hair whose moisture content was 3g showed the best permanent wave form.

Computational and Analytical Studies on the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파에 대한 수치계산과 해석적 연구)

  • Lee, D.H.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.432-437
    • /
    • 2001
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill's aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical analysis are well compared to the results from the aeroacoutics theory with a good agreement.

  • PDF

A Study on the Characteristics of the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파 특성에 관한 연구)

  • 이동훈;김희동;이명호;박종호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.48-56
    • /
    • 2002
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill\`s aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical ana1ysis are well compared to the results from the aeroacoutics theory with a food agreement.

Wave Generation And Wind-Induced Shear Current In Water

  • Choi, Injune
    • 한국해양학회지
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 1980
  • The results of measurements of shear current induced in water by wind in wind wave tunnel are presented briefly. The shear current distributions are found to fit reasonably well an exponentiall form. This form was used to estimate surface velocity and boundary layer thickness used in stability analysis. An analysis of hydrodynamic stability of the shear current was carried out, using a broken line as an approximate profile, to see the stability as a possible mechanism of wind wave generation. Comparison between experimental results and theoretical ones shows that there exists a large discrepancy particularly in phase velocity and hydrodynamic instability of the shear current seems not to be the basic mechanism of wind wave generation.

  • PDF

A Study on the Determination of Setting Time of Concrete in the Determination of Slip-up Speed for Slip-Form System (슬립폼 시스템 상승속도 결정에 요구되는 콘크리트에서의 초기경화시간 결정을 위한 연구)

  • Kim, Heeseok;Kim, Young-Jin;Chin, Won-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.295-302
    • /
    • 2011
  • The setting time which is the important element for the determination of slip-up speed of Slip-Form system is the hardening time of early-age concrete when the in place concrete has minimum compressive strength before the concrete appears out of Slip-Form system. But it is very difficult to predict the setting time because it depends on not only the composition ratio of concrete but also various conditions of construction fields. Thus, the technique to estimate accurately and continuously the hardening time of early-age in place concrete during operating Slip-Form system is necessary to guarantee the safety of Slip-Form system and the maintenance of the shape of concrete. Ultrasonic wave-based nondestructive testing methods have the advantages which are accurate and continuous in estimating concrete compressive strength. Of such methods, the method using surface wave which propagates along the surface of material is effective for thick member such as a pylon. Thus, in this paper a study on the determination of slip-up speed for Slip-Form system using surface wave velocity is performed. The relation between the slip-up speed of Slip-Form system and the setting time is formulated, and the surface wave velocity is estimated from continuous wavelet transform of the numerical results for surface wave propagation. Finally, the accuracy of this method according to the distance between the wave source and receivers and the relation between the estimated surface wave velocity and the elastic modulus are investigated.

A Study on the Determination of Slip-up Time for Slip-Form System using Surface Wave Velocity (표면파 속도를 이용한 슬립폼 시스템 상승 시기 결정에 관한 연구)

  • Kim, Heeseok;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.483-492
    • /
    • 2012
  • The early setting time of concrete is an important factor determining the slip up velocity of the slip-form system. Accordingly, need is for a technique evaluating the early setting time in order to secure the safety of the slip-form system and the construction quality of concrete. This paper intends to estimate the early setting time by evaluating the setting degree of concrete using surface wave velocity so as to determine the slip up time of the slip-form system. Penetration resistance test and compressive strength test are performed first to clarify the relationship between the early setting time of concrete and the compressive strength. Then, compressive strength test and ultrasonic wave test are conducted to examine the relation between the compressive strength and the surface wave velocity. Continuous wavelet transform is adopted to measure the surface wave velocity. Numerical analysis is carried out to demonstrate the appropriateness of the application of continuous wavelet transform. Based on these results, the propagation velocity of the surface wave required for the slip up of slip-form system is suggested. Finally, a reduced model test of the slip-form system is conducted to verify the feasibility of the proposed surface wave velocity for the determination of th slip up velocity.

Resonant Scattering of Underwater Acoustic Wave by Transversely Isotropic Cylindrical Shells (횡등방성 원통 셸에 의한 수중 음파의 공명 산란)

  • 김진연
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.449-455
    • /
    • 1997
  • A theoretical study is presented for the prediction of the scattering of obliquely incident plane acoustic wave by transversely isotropic cylindrical shells immersed in water. In dorder to illustrate the vailidity of the theory backscattering form functions are compared with the existing results for degenerated problems: the catterings by isotropic shell and transversely isotropic solid cylinder. The unidirectional fiber reinforced boron-aluminum composites are selected as a model of transversely isotropic materials having potential applications in practice. From the resonant scattering analysis of the partial backscattering form functions, the dispersion curves for fluid-borne Stoneley wave, guided wave along the shell, and the lowest three Lamb type waves can be found. The Lamb type dispersions are compared with those of the flat plate. The variation of anisotropy significantly affects the properties of circumferential waves. From these results, it can be possible to identify parametrically the material properties of anisotropic cylindrical targets.

  • PDF

Minimum Wave Resistance Hull Form Derived from Center Plane Source Distribution and its Application to Hull Form Design (선체중심선면(船體中心線面)에 분포(分布)된 특이점계(特異點系)로부터 얻어지는 최소조파저항선형(最少造波抵抗船型)과 그 응용(應用))

  • Hyo-Chul,Kim;B.S.,Hyun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.31-37
    • /
    • 1982
  • Developing a minimum wave resistance hull form which is satisfying the given requirements such as displacement and speed is one of the important problems in ship hydrodynamics. The theoretical approach conducted by Pien was successful in developing an optimized hull form, however, which can not be applied directly to practical hull form without manual lines fairing process. To avoid this difficulty, source distribution which arrived after the optimization was put into a fictitious restricted channel and as a result practicably modified hull form was derived by stream line tracing. The wave resistance of the hull thus obtained was calculated by solving the simplified integral equation suggested by Kan. The resistance at design point is almost same with that of the original hull which was represented by source distribution on the vertical rectangular center plane. It is therefore recommended to use the derived hull form for the hull which obtained after manual lines fairing process at Pienoid method. Further researches both in theory and experiment are necessary before this concept is put into practical application.

  • PDF

Hair Damage and Wave Shape according to Dyeing, Bleaching, Permanent Wave Treatment (염.탈색 및 펌 처리에 따른 모발의 손상과 웨이브 형상)

  • Kweon, Soo-Ae;Roh, Joung-Ae;Park, Yong
    • Korean Journal of Human Ecology
    • /
    • v.15 no.6
    • /
    • pp.1083-1089
    • /
    • 2006
  • In this paper, the damage of hair and wave shape in process of the dyeing, bleaching, and permanent hair wave are simulated. The virgin hair that do not process the dyeing, bleaching, and permanent hair wave becomes stable in the scale type. On the other hand, the hair that deals with the dyeing, bleaching, and permanent hair wave is heavily damaged in the scale type. It is observed that the higher pH is decided, the higher the hair is damaged because the scale damage in the bleaching hair is more heavily damaged than the dyeing hair. In case of executing the permanent hair wave, the processing of the plaine rinsing becomes less in the scale damage of the hair and better in the wave form. Therefore, it is found that the processing of the plaine rinsing to improve the wave form and to prevent the hair damage is needed.

  • PDF