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ABSTRACT

The results of measurements of shear current induced in water by wind in wind wave tunnel

are presented briefly. The shear current distributions are found to fit reasonably well an expo-

nential form. This form was used to estimate surface velocity and boundary layer thickness used

in stability analysis. An analysis of hydrodynamic stability of the shear current was carried out,

using a broken line as an approximate profile, to see the stability as a possible mechanism of

wind wave generation. Comparison between experimental results and theoretical ones shows that

there exists a large discrepancy particularly in phase velocity and hydrodynamic instability of
the shear current seems not to be the basic mechanism of wind wave generation.

INTRODUCTION

When wind blows over a calm surface of
water at rest, the first phenomenon we observe
is a strong shear current which is followed by
the formation of waves. The shear current is
induced mear air-water interface by a tangential
stress acting at the interface. In the wind-wave
tunnel where the fetch is limited, a moderate
wind produces three distinguishable water surface
zone at the lower fetch values: A relatively
smooth zone, with no visible or measurable wave
motion, but with very rapid drift current devel-
opment; The preceding smooth zone is followed
by a second domain where first visible waves
are generated inside divergent streaks. Their
motion is almost two dimensional; Finally the
streaks meet each other and the wave motion
becomes apparently random and three dimen-
sional.

Although during recent decades many attempts

(e.g., Miles (1957); Phillips (1957)) have beer}x‘

made to understand the phenomenon of wave

generation by wind, the physical mechanism
concerned is not considered as known satisfac-
torily. Most of the work searching for the origin
of the wave is based largely on two basic ideas:
Resonance mechanism between the turbulent
fluctuation of pressure in the air and the calm
water surface; Hydrodynamic instability mecha-
nism of either air flow only or combined flow
of air and water.

Based on the idea that the wave generation
may be associated with hydrodynamic instability
of the shear current induced in water by wind,
Stern and Adam (1973) carried out a rough
instability analysis of the shear current.

In this paper first we will present briefly the
results of shear current measurements in a wind-
wave tunnel in the first zome described above
where we observe no measurable wave motion.
Then we consider analytically the hydrodynamic
stability of that flow field as a possible mechanism
of wind wave generation using a broken line
approximation to the shear current.” Then we
will compare these analytical results with

measurements.
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LABORATORY EXPERIMENTS

1. Experimental Conditions.

The measurement was performed in the wind-
wave facility at the Institut de Mécanique
Statistique de la Turbulence, Marseille, France.
This facility is described in detail by Coantic
and Favre (1970). Briefly the facility has a
surface of water of 0. 52m wide and 8. 65m long.
Its depth is about 0.26m maintained constant
by a small water pump. The schematic represen-
tation of the physical situation is shown in Figure
1. The air flow in the entrance of the experi-
mental section is arranged to have a fully devel-
oped turbulent boundary layer, its thickness
being about 10cm for the wind velocity of U..=
5m/s. The wind velocity was chosen as 5m/s so
that we can have three zone, described in the
introduction, extended over a large fetch length.
The phase velocity and the dominant frequency
of the first wave appearing in the second zone

are 29cm/s and 16 Hz respectivly with wave
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number k=3, 65em™!, wave length ].8lcm and
wave amplitude 0. 7mm.

The water velocity profile was measured by
a conical type hot film anemometer using the
anemometry channel manufactured by DISA
Elektronik A/S, working at a constant tem-
perature mode. It is well known that this sensor
is particulary adapted to the study of water
flow. The range of the velocity which interests
us is of the order of 20cm/s or less.

2. Shear Current Profile.

For obvious reasons, measurements were
limited to the first zone where no wave motion
was present. Shear current was measured as a
function of depth y at four different stations;
X=1.5cm, 15.5cm, 32.5cm and 46cm to see
the development as a function of fetch. In
Figure 2, the velocity profile is plotted on a
linear-linear scale. It is important to note that
at each station the point represented in
Figure 2 is the result of several independent
measurements, which means that the pheno-

menon may be repeated with great precision.
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Fig. 1. Schematic representation of the physical situation.
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Fig. 2. Shear current distribution as a function of
fetch (X) and depth (y) and broken line
profile used in analysis. @, ¥=1.5cm: &,
x=15.5cm; O, ¥=32.5cm; @, X=46cm.

To estimate the surface velocity and boundary
layer thickness for the discussion of analytical
results, we try to fit the measured points to
the following exponential form which is chosen
by several authors, particularly by McLeish et
al (1975).

U(y) = Use??
where U,: surface velocity
b: constant characterizing boundary layer
thickness

The values of U, and b for different fetch
values are estimated from measurements and
given in Table 1,

In figure 3, a log-linear plot was used, show-
ing that an exponential change of the velocity
with depth provides a reasonable description.

Note that the surface velocity U, and boundary
layer thickness 47! increase as the fetch in-

creases. Futher increase of fetch values does not

Table 1. The values of U, and b for different fetch

values
1(cm) | 15| 155 [ 32.5 | 46.0
U.(cm/s) ‘ 50 | 12.22| 14.53| 15.43
B(cm™) 80 | 55 | 43| 36
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Fig. 3. Shear current distribution fitted to the
exponential form as a function of fetch and
depth. @, 1=1.5cm; ®, 1=15.5cm; O, ¥=
32.5cm; @, X=46cm.

seem to increase the surface velocity but the
boundary layer thickness is increased. The sur-
face velocity scems to keep an almost constant

value of about 3% of wind velocity.

STABILITY ANALYSIS

1. Governing Equations.

Result of measurements of shear current shows
that as fetch increases, the surface velocity
increases very rapidly to attain its maximum
value while boundary layer thickness increases
gradually. Under the assumption that x-variation
of shear current profile is small, the shear
current profile is taken as U(y) which is inde-
pendent of . We also assume that the wave
motion is two dimensional and the wind direc-
tion is in the positive x direction with posi-
tive y normal to it and vertically upwards (Figure
1). The fluid is assumed incompressible and
inviscid. The equations governing sufficiently
small perturbations of a two-dimensional flow can
be obtained by traditional linearization scheme

in hydrcdynamic stability problem:
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with undisturbed state solution

P=—pgy+P, @

where p,u and v are the perturbed part of
pressure, z and y component of the wvelocity
respectively and P, the pressure at y=0,p the
fluid density and g is gravitational acceleration.

Equation (1) permits the use of stream fun-

ction ¥ where

u= —aayyi‘ and v=— %Z— (5)
We also assume
(2, T)=(,¥) e*t—en ®

where % is a wave number and ¢ is a complex
phase velocity. p and ¥ depend only on y. The
displacement of the surface is taken to be

p=7eit e )
where % is the amplitude.

After eliminating p in equations (2) and (3)
and using equations (5) and (6), we can get
an equation known as Rayleigh equation

(U—o) @ k) — U =0 @)
with

=(c— &'+ UT 9

s

where / denotes the derivative with respect to y.
If we know the form of U(y) and the boundary
conditions, we can obtain an eigenvalue equation
determining c.

As a first approximation to the shear current
profile U(y), we consider the broken line (Figure
2) for mathematical simplicity in the following
analysis:

Up)="F-(+d)  —d<y<o
=0 —ooy<—d
Where U, is the surface velocity and d is the

(10)

characteristic boundary layer thickness. Then

the equation (8) becomes
U = an
for the layer above and below y=-—d.
The solution of the equation (11) can be
written as
T()=Aetr4Ber —d<y<o
=Cet+ De™* —oo<ly<—d

(12)

where A,B,C and D are the undetermined
coefficients. With appropriate boundary condi-
tions we can obtain an equation determining ¢,
similar to that given by Stern and Adam
(1973).

2. Boundary Conditions and Eigenvalue
Equation.

For simplicity we will use the following
notation.

(Gly=G(y+)—G(y~)

for an arbitrary physical quantity G.

As the perturbation must vanish as y— —oo,
we get D=0 in equation (12). At the interface
the vertical velocity satisfies the kinematic

condition

an on _
5t H U ="

which becomes

(Ui—eyp=—¥ a3
and the condition that the normal stress vanish
at the free surface is

9

2.
L opyem 7
P—rp-— Taxz

at y=7

where T is the surface tension. Note that the
condition is evaluated at y=7. The change from

y=y to y=0 gives

o 0
p=pgy— F—ajz at y=0

by taking into account (4). Thus we obtain
P=pgh+ kT (14
The first term on the right is the contribution
from the undisturbed state due to the displace-
ment 7. Introducing (9), (12) and (13) into

(14) gives
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Finally at y= —d, the pressure and the stream
function are continuous
(#)-a=0
Tl_.=0
from which we obtain by introducing equations
(9) and (12)
ck{Ae %4 — Det?)

=— (Ae* 4 Bet?) go +ckCe™*¢  (16)

Ag#e | Betd =Ce+d 17
respectively.

By introducing the non-dimensional variables

T
pgd*

r=kd, r=1— ¢ f=_gi f=
(4]

0, U’
and
= - f(1+#%6)
the equations (15), (16) and (17) become
A@*e—r+1) —B(ris+r+1) =0
A((Q=r)s+1)—B((1-r)s—1)e*
~C(1-r)=0
A + Be*  — C =(
Therefore, these equations in the coefficients A,
B and C have nontrivial solutions if and only

if the following determinant is zero.

(P2h—r+l) —(ri+r+l) 0
(A=r)a+l —(A=rx—-1)e* (r—1)=0 (18)
1 e -1

from which we can cbtain the complex phase
velocity as a function of the parameters charac-
terizing the flow:

c=F(Us,d,g,T,weo-eeeee )
The problem consists of determning the sign of
the imaginary part of c.

The equation (18) becomes

3+ A2+ Ayr+ A,=0 (19)

where

—.__,__‘_l__ —2K
A= 9% (26+1-+e2)

1 -y
A1=—2-;2~ @2rl+25—1—e%)

1 2%
Azz—éﬁ-l(l—%—e 2R

The roots of equation (19) are determined
depending on the sign of 4 defined by
(4 2 g \?
HEEAES

where

i=FAd— S Adgt Ay and g=A,— FAS

If 4<0, there are three real roots and the flow
is stable. While if 4>0, there is one real root
and one complex conjugate and the flow is
unstable. The neutral stability curve is defined
by 4=0, which gives f as a function of # and
0. Figure 4 shows the neutral stability curve,
given by f as a function of # for different value
of 6. Any point inside the curve is unstable.
Figure 5 shows the phase velocity of the most
unstable mode, represented as a function of «.
It is independant of 6.

It should be noticed that for a velocity profile
U(y) which decreases monotonically as depth
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Fig. 4. Neutral stability curves for different values
of ——--, 6=0; ——-, 6=0.1; —-, 6=0.2;
———— , €=0.4; —, 6=1.5.
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Fig. 5. Phase velocity as a function of wave
number.

increases without having any point of inflection,
the flow is stable if the upper boundary is rigid
in the present problem according to Rayleigh’s
theorem. However, in our case the upper boun-
dary is free surface and equation (15) seems to

give a destabilizing effect.
DISCUSSION

In making a comparison between the measure-
ment and analytical results, U, obtained in
Table 1 is used while the characteristic boundary
layer thickness d is estimated by the following

relation.

U, fi _etdy= f o_d ~Z"— (y+d)dy

which represents the equality of the total mo-
mentum represented by Ue?? and the broken
line profile. The calculation of 4 at x=46cm
gives d=(. 43cm.

Using U,=15c¢m/s_and d=(. 43cm, we obtain
f=1.87 and 6=0.4. In Figure 4 we find that
for 6=0.4 the flow becomes unstable when f
is smaller than about 0.3, which is much
smaller than 1.87 the value obtained above.
Thus the shear flow of Uy=15cm/s and d=
0. 43cm is stable for all wave number. It can be
easily shown that for d=0.43cm the flow be-

comes unstable when U, is larger than 37cm/s,

which is more than twice the measured surface
velocity of Uy=15cm/s.

For mathematical simplicity the broken line
approximation to shear current was used rather
than the exponential form employed in the
analysis of experimental results. It may be of
interest to try the exponential form. However,
the results obtained in the present analysis look
reasonable although the analysis is very approxi-
mate. One of the general properties of hydro-
dynamic instability theory of bounded parallel
flow is that the phase velocity of the unstable
mode is less than the maximum velocity of the

undisturbed flow. In Figure 5, —{7—~<1 for all «
1]

although in small x range the curve is not
shown. U, is the maximum velocity of shear
current. Thus the general property is true in
the present problem even if the upper boundary
is free surface. Therefore, it seems that the
wave number associated with wind waves may
become unstable in more elaborate calculation.
There may exist a great difference between the
phase velocity measured and that calculated:
the former is about 29cm/s (=2U,), while the
latter can not become larger than U,.

In conclusion, the instability of shear current
seems not to be a possible mechanism of the
wind-wave generation even if in a more elaborate
calculation the shear current may be unstable
hydrodynamically. We can say, however, that
the shear current as well as air flow must be
taken into account if wind-wave generation is
concerned with hydrodynamic instability. The
inclusion of air flow may eliminate the phase
velocity difference with air velocity being much
larger than phase velocity measured. On the
other hand Miles’ results (1957) shows that the

most unstable mode of shear flow is arround

¢ _=0.3, the ratio of phase velocity to wind

U.
velocity, while in our experimental results we
find ULN=—520%=0. 06 which is clearly means



Wave generation and wind-induced shear current in water

that the wave motion is not related to the most

unstable mode of air flow only.
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