• Title/Summary/Keyword: wave force distribution

Search Result 85, Processing Time 0.038 seconds

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity

  • Kumar, Rajneesh;Sharma, Nidhi;Chopra, Supriya
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.459-483
    • /
    • 2022
  • In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has been constructed. The governing equationsfor orthotropic photothermoelastic plate are simplified for two-dimension model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source and carrier density periodic loading are taken to explore the application of the assumed model. Various field quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the transformed domain. The problem is validated by numerical computation for a given material and numerical obtained results are depicted in form of graphs to show the impact of varioustheories of thermoelasticity along with impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, plasma and elastic wave and otherfieldsin thematerialscience, physical engineering.

A Study on the Course Keeping Ability under Wave Condition Considering Ship's Maneuverability (조종성능을 고려한 파랑 중 선박의 직진성능에 관한 연구)

  • Kang, Dong-Hoon;Lee, Soon-Sup;Lee, Seung-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.193-199
    • /
    • 2013
  • Course keeping ability of ships under wave are analyzed with wave. The simulation with three degrees of freedom is developed and 3-D source distribution method is applied to get wave force for the simulation. The simulation is conducted with the restriction of maximum rudder angle and time delay of control and regular wave and irregular wave are considered as the source of external forces. Simulations with ships which have different maneuverability with tuned hydrodynamic coefficients are developed to assess the variation of the course keeping ability depending on the ship's maneuvering characteristics. The course Keeping ability is evaluated by comparison of distance while the ships are simulated with autopilot control.

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Bayones, F.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.277-296
    • /
    • 2015
  • The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The theory of generalized surface waves has firstly developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave velocity equations have been obtained in different cases. The numerical results are given and presented graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibrereinforced of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times and parameters for fibre-reinforced of the material medium are very pronounced.

Comparison of Wave Pressure Acting on the Front Wall According to the Porosity of Caisson Breakwater Having the Cap of Wave Chamber (유수실 상부 덮개가 있는 케이슨 방파제의 유공률에 따른 전면벽 작용 파압 비교)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.573-584
    • /
    • 2013
  • This study experimentally investigated the change in distribution of wave pressure on the front wall according to the variation of the front wall porosity of the caisson breakwater having the cap of wave chamber. First, the wave pressure for the non-porous caissson corresponding to zero porosity was measured and compared with the pressure formula suggested by Goda(1974). The analysis showed that the measured pressure distribution fairly well agreed with the Goda formula, which confirmed the accurate measurement of wave pressure in the present experiment. In case of the porous caisson, meanwhile, the experiment was performed by varying the front wall porosity as 0.2, 0.25, and 0.3. The wave pressure distribution at the front wall showed little difference according to the porosity for most of the test wave conditions, whereas the pressure slightly increased with the porosity for some test waves whose wave heights and periods were relatively large. However, the difference according to the porsosity was insignificant for the wave force at the front wall.

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Motion and Total Force Distribution for a Floating Marine Structure in Finite-Depth Water

  • Jin-S.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.2
    • /
    • pp.13-43
    • /
    • 1976
  • A potential flow approach is used to develop a method and an associated computer program for floating marine structures of general configuration in wave of all water depths with arbitrary heading. It computes the total force distributions and six degrees-of-freedom motion. The hydrodynamic-force equations and derived become identical under certain assumptions to the equations commonly used by the offshore industry, and the two methods are compared in detail. The computed motions of all six degree agree quite well with model-scale and full-scale experimental data for two typical semisubmersible drilling rigs in finite-depth water. Also the presented motion computations are more accurate than a previous work by the second approach. The present computations use experimentally validated or determined values of frequency-dependent hydrodynamic coefficients with the effects of the free surface and both finite and infinite water depths. The present method generates sufficient computation accuracy to use for practical design applications.

  • PDF

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.