• Title/Summary/Keyword: wave force coefficient

Search Result 77, Processing Time 0.023 seconds

Experimental Study on Irregular Wave Forces Acting on a Marker Rock Installed on a Submerged Breakwater (수중방파제 천단상의 표식암에 작용하는 불규칙파의 파력특성에 관한 실험적 연구)

  • Hur, Dong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.413-420
    • /
    • 2006
  • The construction of a submerged breakwater has become increasing due to their multiple effects on the coastal zone. Recently, marker rocks have been installed on the submerged breakwater to indicate its position to the vessels instead of buoy systems, since a buoy is not only improper for the ocean view, but also its mooring system may be damaged by the impulsive wave force caused by wave breaking on the breakwater. The accurate estimation of wave forces on such rocks is deemed necessary for their stability design. In this study, the characteristics of irregular wave forces acting on a marker rock, which was installed on a submerged breakwater, was investigated on the basis of laboratory experiments. It was revealed that the dimensionless highest one-third wave force tends to decrease with increasing the installation distance of a marker rock from the leading crown edge of a submerged breakwater. Also, the drag and inertia coefficients for irregular wave forces, which were obtained using the Morison equation, were investigated in relation to K.C. number.

Spline Boundary Element Modeling of Wave Scattering on a Submerged Breakwater

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.396-402
    • /
    • 2006
  • An efficient spline boundary element scheme is newly developed for water wave scattering of an incident wave train on a submerged breakwater. Validation of the present scheme is accomplished through the numerical experiments for various cases, by comparing the numerical results with theories vailable in the literature. Very accurate reflection and transmission coefficients for thin horizontal breakwater are obtained. It is observed that the reflection coefficient for the rectangular breakwater is significantly affected by the thickness. Horizontal and vertical forces on the breakwater for various thicknesses were also investigated.

  • PDF

Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves (다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-595
    • /
    • 2007
  • The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.

Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake (지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교)

  • 박성진;오병현;박춘식;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

An Experimental and Numerical Study on the Characteristics of Pontoon Type Breakwater Fixed Near Free Surface in Regular Wave (규칙파중 수면 근처에 고정된 상자형 방파제의 특성에 관한 연구)

  • M. Song;D.Y. Kim;H.Y. Lee;I.H. Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.38-50
    • /
    • 1998
  • In order to understand the characteristics of floating breakwaters we planned series of experimental and numerical investigations and completed the first stage which is the experiment with fred pontoons near the free surface. As controlling parameters the draft and breadth of pontoon were varied and the wave frequency and steepness were also varied. Wave transmission and forces exiled on the breakwater were experimentally investigated and compared with the results computed based on linear potential theory. Discussions made are on the effect of draft and wave length on the wave transmission and force in fixed pontoon case. The predicted and measured results show quantitatively good agreement both in forces and transmission coefficient. The effect of separation distance between two pontoons on the wave transmission and force in array case is also examined.

  • PDF

Development of novel strain sensor using surface acoustic wave (새로운 표면탄성파를 이용한 변형률 센서 개발)

  • Oh, Hae-Kwan;Hwang, U-Jin;Eun, Kyung-Tae;Choa, Sung-Hun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.594-599
    • /
    • 2011
  • A SAW strain sensor based on Shear Horizontal wave with an 92 MHz central frequency was developed. It consists of SAW sensor, PCB substrate and bonding material (Loctite 401). External force applied to PCB substrate bonded to a piezoelectric substrate induces strain at the substrate surface, which causes changes in the elastic constant and density of the substrate and hence the propagation velocity of the SAW. The change in the velocity of the SAW result in a frequency shift of the sensor and by measuring a frequency shift, we can extract the strain induced by the external force. The $41^{\circ}$ YX $LiNbO_3$ was used because it has a Leaky shear horizontal(SH) wave propagation mode and a high electromechanical coupling coefficient ($K^2$=17.2%). And to compare with Rayleigh wave mode, $128^{\circ}$ YX $LiNbO_3$ was used. And to make a stable and low insert loss, Split IDT structure was used. The obtained sensitivity and linearity of the SAW strain sensor in the case of Split IDT were measured to be 17.2 kHz / % and 0.99, respectively.

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

A Study on a Perforated Breakwater (유공방파제에 대한 연구)

  • Lee, Yong-Gyu;Pyeon, Jong-Geun;An, Su-Han
    • Water for future
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 1986
  • Both hydraulic and dynamic characteristics of a single perforated wall are studied theoretically and experimentally. Theoretically, the effect of evanescent modes on wave force acting on a single perated wall is studied by use of the Horiguchi theory. The wave force on the perforated wall is presented to be insensitive to evanescent modes. According to experimental study, The larger perforation ratio(${\gamma}$) grows, the weaker the wave force on the wall becomes sensitively. And in the small value of l/D (ratio of wall thickness(l) to hole diameter(D)) where the holes on the wall are regarded as orifice, the wave force on the wall is insensitive to the variation of l/D. Energy loss coefficient f is estimated at 1.0 in this small value of l/D by use of Horiguchi theory. But in the large value of l/D where the holes are regarded as pipe, the wave force on the wall is relatively sensitive to the variation of l/D and f is estimated at 1.5 by use of Horiguchi theory.

  • PDF

On the Efficiency of a Wave Absorber Using the Arrays of Upright Perforated Plates (직립 타공판 배열에 따른 소파 성능해석)

  • Cho, I.H.;Kim, H.J.;Choi, H.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • In this paper, the numerical model to analyze the wave absorbing performance of upright perforated plates is developed under the linear potential theory. If the drag force is dominent to the inertia force in passing perforated plate, the characteristics of perforated plates are determined by a nondimensionlized real-value of G or a length scaled real-value of a. The parameters (G,a), which depend on the drag coefficient, porosity and local shape of plates, can be readily obtained by simple experiments. We investigated the reflection coefficients over a wide frequency range according to the arrays of perforated plates with different values of G and a. We found that the wave absorbing system using the arrays of upright perforated plates is sufficient to install in the ocean engineering basin.

  • PDF

Hydrodynamic Moments produced by Rolling Oscillation of Cylinders with Chine Sections (배골형단면(背骨刑斷面) 주상체(柱狀體)의 횡동요(橫動搖)에 있어서의 부가관성(附加慣性)모우먼트와 감쇠(減衰)모우먼트에 관하여)

  • J.H.,Hwang;Key-P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.7-14
    • /
    • 1974
  • Hydrodynamic moments produced by the rolling oscillation on the free surface and the associated swaying force were exactly calculated by Ursell-Tasai method for the cylinders with Kim's chine form sections($a_1,\;a_7$). The coefficient of the added moment of inertia $K_{\varphi^{\tau}}$, the progressive wave height ratio $\bar{A}$, the coefficient of swaying forces $K_{RS}$, ${\alpha}_{RS}$ of rolling oscillations are shown in the several figures. The results of the computation were compared with those of lewis form sections. It is concluded that the effect of the section form on the added moment of inertia is significant for the cylinder with the section of same beam-draft ratio and sectional area coefficient, on the other hand, a little effect appears on the wave damping.

  • PDF