• Title/Summary/Keyword: wave field extrapolation

Search Result 3, Processing Time 0.017 seconds

Generalized Frequency-wavenumber Migration Implemented by the Intrinsic Attenuation Effect (비탄성 매질의 진폭 감쇠 효과를 첨가한 일반화된 주파수-파수 구조보정)

  • Baag Chang-Eob;Shim Jae-Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.47-52
    • /
    • 1993
  • A method and results of computations are presented for the 2-D seismic migration process in the frequency-wavenumber domain for the laterally and vertically inhomogeneous medium. In order to take the intrinsic attenuation effect into account in the migration process the complex-valued wave velocity is used in the wavefield extrapolation operator, improving the generalized frequency-wavenumber migration technique. The imaginary part of the complex-valued wave velocity includes the seismic quality factor Q value. In derivation of the solution of the wave equation for the medium of inhomogeneous wave velocity and anelasticity, the inhomogeneous medium is mathematically converted to an equivalent system which consists of a homogeneous medium of averaged slowness and an inhomogeneous distribution of hypothetical wave source. The strength of the hypothetical wave source depends on the deviation of squared slowness from the averaged value of the medium. Results of numerical computation using the technique show more distinct geologic images than those using the convensional generalized frequency-wavenumber migration. Especially, the obscured images due to the wave attenuation by anelasticity are restored to show sharp boundaries of structures. The method will be useful in the imaging of the reflection data obtained in the regions of possible petroleum or natural gas reservoir and of fractured zone.

  • PDF

Comparison of Antenna Parameters of R-/S-Band Standard Gain Horn Antennas

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.224-231
    • /
    • 2015
  • A comparison of the antenna parameters for R-band (1.7-2.6 GHz) and S-band (2.6-3.95 GHz) standard gain horn antennas has been performed by the Korea Research Institute of Standards and Science (KRISS), together with seven domestic participants from private companies and public institutions. Its purpose, as a proficiency test program of the 'Antenna Measurement Club' of KRISS, was to check equivalences in antenna parameter measurements between KRISS and the participants, particularly in the R-/S-band, to support antenna manufacturers and end users in Korea. The measurement parameters of this comparison are the power gain, radiation pattern, and reflection coefficient of the traveling standards for R-/S-band pyramidal standard gain horn antennas. The comparison used a gain comparison method and an extrapolation method to measure the power gain of the two traveling standards; the radiation patterns were measured in the far-field region of the transmitting and receiving antennas.

A Numerical Study of Low Grazing Angle Backscattering from Random Rough Surfaces (不規則 粗面에서 저입사각 후방산란에 관한 수치해석)

  • Kwang-Yeol Yoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.590-598
    • /
    • 2002
  • We have numerically analyzed the electromagnetic wave scattering from randomly rough dielectric surfaces by using the finite volume time domain (FVTD) method. We have then shown that the present method yields a reasonable solution even at low-grazing angle (LGA). It should be noted that the number of sampling points per wavelength should be increased when more accurate numerical results are required, which fact makes the computer simulation impossible at LGA for a stable result. However, when the extrapolation is used for calculating the scattered field, an accurate result can be estimated. If we want to obtain the ratio of backscattering between the horizontal and vertical polarization, we do not need the large number of sampling points. The results are compared with the experimental data.