• Title/Summary/Keyword: wave equation analysis

Search Result 586, Processing Time 0.028 seconds

A Study on the Topography Change of Hyeya River and Jinha Beach (회야강 하구 및 진하해수욕장의 지형변화에 관한 연구)

  • 민병형;민일규;이동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • In recent years Jin-Beach and Hyeya River mouth have experienced severe erosion phenomena. The cause of erosion is examined using a 3-dimensional nunumerical sediment transport model. The model is composed of three components : wave model, wave-induced current model and 3-dimensional sediment transport model. In the wave analysis component we consider refraction, diffraction and reflection based on Maruyama and Kajima method. For the wave-induced current model we use depth-integrated continuty equation and momentum equations. For the 3-dimensional sediment transport model we consider bed load and suspended load simutaneously. Model results obtained for Jin-ha Beach and Hyeya River mouth agreed well with experimental results.

  • PDF

Numerical Analysis of the Three-Dimensional Nonlinear Waves Caused by Breaking Waves around a Floating Offshore Structure (부유식 해양구조물 주위의 쇄파현상을 동반한 3차원 비선형성 파의 수치해석)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.62-73
    • /
    • 1996
  • Numerical simulation is made of the three-dimensional wave breaking motion about a part of a floating offshore structure containing a circular cylinder mounted vertically onto a lower hull in regular periodic gravity wave generated by a numerical wave maker. TUMMAC-VIII finite-difference method is newly developed for such a problem. By use of density-function technique the three-dimensional wave breaking motion is approximately implenented in the framework of rectangular grid system. A porosity technique is devised for the implementation of the no-slip bydy boundary conditions. The generation of breaking waves by the interaction of incident waves with the structure is well simulated and interesting features of breaking waves are revealed with containing degree of quantitative and qualitative accuracy.

  • PDF

Three-Dimensional Numerical Analysis of Spinning Detonation Wave (Spinning Detonation 파의 3차원 수치 해석)

  • Cho, Deok-Rae;Choi, Jeong-Yeol;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.205-212
    • /
    • 2006
  • Three-dimensional numerical study was carried out for the investigation of the detonation wave structures propagating in tubes. Fluid dynamics equations and conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The variable gas properties between unburned and burned states were considered by using variable specific heat ratio formulation. The unsteady computational results in three-dimension show the detailed mechanisms of rectangular and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record. The results for the small reaction constant shows the spinning mode of three-dimensional detonation wave dynamics, which was rarely observed in the previous numerical simulation of the detonation waves.

  • PDF

A study on the optimal equation of the continuous wave spectrum

  • Cho, Hong-Yeon;Kweon, Hyuck-Min;Jeong, Weon-Mu;Kim, Sang-Ik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2015
  • Waves can be expressed in terms of a spectrum; that is, the energy density distribution of a representative wave can be determined using statistical analysis. The JONSWAP, PM and BM spectra have been widely used for the specific target wave data set during storms. In this case, the extracted wave data are usually discontinuous and independent and cover a very short period of the total data-recording period. Previous studies on the continuous wave spectrum have focused on wave deformation in shallow water conditions and cannot be generalized for deep water conditions. In this study, the Generalized Extreme Value (GEV) function is proposed as a more-optimal function for the fitting of the continuous wave spectral shape based on long-term monitored point wave data in deep waters. The GEV function was found to be able to accurately reproduce the wave spectral shape, except for discontinuous waves of greater than 4 m in height.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part Ι: basic formulation and linear HFTD

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.517-530
    • /
    • 2014
  • Seismic ground response analysis is one of the most important issues in geotechnical earthquake engineering. Conventional seismic site response and free field analysis of layered soils does not consider the effect of surcharge mass which may be present on the top layer. Surcharge mass may develop extra inertial force to the soil and, hence, significantly affect on the results of seismic ground response analysis. Methods of analysis of ground response may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soil dynamic properties dependency to loading frequency are benefits of frequency domain analysis. In this part of the paper, seismic ground response is analyzed using transfer function method for soil layers considering surcharge mass on the top layer. Equation of motion, wave equation, is solved using amended boundary conditions which effectively take the impact of surcharge mass into account. A computer program is developed by MATLAB software based on the solution method developed for wave equation. Layered soils subjected to earthquake loading were numerically studied and solved especially by the computer program developed in this research. Results obtained were compared with those given by DEEP SOIL computer program. Such comparison showed the accuracy of the program developed in this study. Also in this part, the effects of geometrical and mechanical properties of soil layers and especially the impact of surcharge mass on transfer function are investigated using the current approach and the program developed. The efficiency and accuracy of the method developed here is shown through some worked examples and through comparison of the results obtained here with those given by other approaches. Discussions on the results obtained are presented throughout in this part.

Plane Wave Scattering Induced Resonant Modes of Spherical Resonator (구형태 공진기에서의 평면파 산란 공진모드)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1260-1263
    • /
    • 2013
  • Plane wave scattering from a spherical resonator is calculated by solving the combined field integral equation (CFIE) with Rao-Wilton-Glisson (RWG) basis functions and the moment method. The calculations show that magnetic and electric dipoles are found at resonant modes. These characteristics are confirmed by radiation patterns in the far field region. In addition, an analysis of a magnetodielectric sphere is discussed.

Two-Layered Microwave Absorber of Ferrite and Carbon Fiber Composite Substrate

  • Han-Shin Cho;Sung-Soo Kim
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.64-67
    • /
    • 1998
  • Microwave absorbing properties of ferrite-epoxy composite (absorbing layer) attached on the carbon fiber polymer composite (reflective substrate) are analyzed on the basis of wave propagation theory. A modified equation for wave-impedance-matching at the front surface of absorbing layer including the effect of electrical properties of the quasi-conducting substrate is proposed. Based on this analysis, the frequency and layer dimension that produce zero-reflection can be estimated from the intrinsic material properties of the obsorbing layer and the substrate. It is demonstrated that the microwave reflectivity of carbon fiber composite has a strong influence on the microwave absorbance of front magnetic layer.

  • PDF

Analysis of periodically slotted dielectrically filled parallel-plate waveguide as a leaky wave antenna : E-polarization case (유전체로 채워진 주기적인 슬롯을 갖는 평행평판 도파관 누설파 안테나의 해석 : E-편파)

  • 이창원;조영기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.30-35
    • /
    • 1995
  • Periodically slotted dielectrically filled paralled-plate waveguide as a leaky wave antenna is analysed for E-polarization case. The homogeneous linear equation whose unknown is the surface current density over the conducting strip is formulated, from which the complex propagation constant is calculated and compared with the previous results. Good correspondence between them is observed. And a method for the radiation pattern is also considered.

  • PDF

A Numerical Study on 2-Dimensuional Tank with Shallow Draft (천수에서 2차원 수치파 수조에 대한 계산)

  • 임춘규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • A numerical analysis for wave motion in the shallow water is presented. The method is based on potential theory. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed common boundary to a linear solution in outer domain. In two-dimensional problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary.

  • PDF

A Study on Estimation of Carotid Intima-Media Thickness(IMT) using Pulse Wave Velocity(PWV) (맥파전달속도를 이용한 내중막 두께 추정에 관한 연구)

  • Song, Sang-Ha;Jang, Seung-Jin;Kim, Wuon-Shik;Lee, Hyun-Sook;Yoon, Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2009
  • In this paper, we correct pulse wave velocity(PWV) with heart-rate and derive regression equations to estimate intima-media thickness(IMT). Widely used methods for diagnosis of arteriosclerosis are IMT and PWV. Arterial wall stiffness determines the degree of energy absorbed by the elastic aorta and its recoil in diastole but there is not correlation between sclerosis and IMT in an existing study. In this study, we will correct PWV with heart-rate and get regression equation to estimate IMT using heart-rate correction index(HCI). We executed experiments for this study. Made up question of physical condition and measured electrocardiogram(ECG), photoplethysmogram (PPG) of finger-tip and toe-tip and ultrasound image of carotid artery. Calculated PWV and IMT using ECG, PPG and ultrasound image. We found that every p-value between PWV and IMT is not significant(<0.05). But p-value between IMT and HCI which is a corrected PWV using heart-rate is significant(>0.01). We use HCI and various measured parameter for estimating regression equation and apply backward estimation to select parameters for regression analysis. Result of backward estimation, found that only HCI is possible to derive proper regression equation of IMT. Relationship between PWV and IMT is the second order. Result of regression equation of E-H PWV is $R^2$=0.735, adj $R^2$=0.711. This is the best correlation value. We calculate error of its analysis for verification of earlobe PWV regression equation. Its result is RMSEP=0.0328, MAPE(%) = 4.7622. Like this regression analysis, we know that HCI is useful parameter and relationship between PWV, HCI and IMT. In addition, we are able to suggest possibility which is that we can get different parameter of prediction throughout just one measurement.