• Title/Summary/Keyword: wave equation analysis

Search Result 586, Processing Time 0.031 seconds

Study on the Design of Upper Deck Hatch Corner Insert Plates of Large Container Carriers (대형 컨테이너선 상갑판 해치코너부 보강판의 설계에 관한 연구)

  • Park, Sung-Gu;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.331-339
    • /
    • 2006
  • The objective of this paper is to calculate the fatigue strength for upper deck hatch corner insert plate of large container carriers without wave load analysis and global finite element analysis at the initial design stage. Wave load analysis and global F.E. analysis for three container carriers have been performed by GL(Germanischer Lloyd) procedure to propose the equation for hatch corner stress range which is the important factor in fatigue strength calculation. Considering the restraining effect of bulkhead, three types of equation, that is, single tight bulkhead, double tight bulkhead and support bulkhead have been proposed. Using the proposed equations, a simplified fatigue analysis based on GL rules has been performed for two container carriers of which fatigue strength analysis was carried out by GL. From the comparison between fatigue strength result of using the proposed equations and that of GL, it has been found that proposed stress range equations are useful for scantling of upper deck hatch corner insert plates for over 8,000 TEU class container carriers.

Investigation of effectiveness of double concave friction pendulum bearings

  • Ates, Sevket
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.195-213
    • /
    • 2012
  • This paper presents the investigation of the stochastic responses of seismically isolated bridges subjected to spatially varying earthquake ground motions including incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering Harichandran and Vanmarcke coherency model. The effect of the wave-passage is dealt with various wave velocities in the response analysis. Homogeneous firm, medium and soft soil conditions are selected for considering the site-response effect where the bridge supports are constructed. The ground motion is described by filtered white noise and applied to each support points. For seismic isolation of the bridge, single and double concave friction pendulum bearings are used. Due to presence of friction on the concave surfaces of the isolation systems, the equation of motion of is non-linear. The non-linear equation of motion is solved by using equivalent linearization technique of non-linear stochastic analyses. Solutions obtained from the stochastic analyses of non-isolated and isolated bridges to spatially varying earthquake ground motions compared with each other for the special cases of the ground motion model. It is concluded that friction pendulum systems having single and double concave surfaces have important effects on the stochastic responses of bridges to spatially varying earthquake ground motions.

Numerical Analysis of Beach Erosion Due to Severe Storms (폭풍에 의해 발생하는 해빈침식에 대한 수치해석)

  • 조원철;표순보
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • A numerical model is applied for predicting two-dimensional beach and dune erosion during severe storms. The model uses equation of sediment continuity and dynamic equation, governing the on-offshore sediment transport due to a disequilibrium of wave energy dissipation. And the model also uses sediment transport rate parameter K from dimensional analysis instead of that recommended by Kriebel. During a storm, a beach profile evolves to a form where the depth at the surf zone is related to the distance seaward of the waterline. In general, the erosion in the beach profile is found to be sensitive to equilibrium profile parameter, sediment transport rate parameter, storm surge level and breaking wave height.

  • PDF

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

Response Analysis of Floating Structure under Wave Loads Considering Stiffness (파랑하중을 받는 부유체의 강성에 따른 응답 고찰)

  • Kim Byoung-Wan;Kim Young-Shik;Hong Sa-Young;Kyoung Jo-Yun;Cho Seok-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.941-948
    • /
    • 2006
  • In this paper, the effect of stiffness on hydroelastic responses of plate-like floating structure under wave loads are studied. Direct method is used for the numerical analysis. In the numerical analysis, structural equation is formulated by finite element method(FEM) and higher order boundary element method(HOBEM) is employed for the analysis of fluid flow. A 1000m-long VLFS(Very Large Floating Structure) is considered in numerical analyses. By analyzing VLFS for various cases of stiffness, the characteristics of hydroelastic responses with the variation of stiffness are investigated.

  • PDF

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.

Nonlinear Hydroelastic Analysis Using a Time-domain Strip Theory m Regular Waves (규칙파중 시간영역 스트립이론을 이용한 비선형 유탄성 해석)

  • CHO IL-HYOUNG;HAN SUNG-KON;KWON SEUNG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.1-8
    • /
    • 2005
  • A nonlinear time-domain strip theory for vertical wave loads and ship responses is to be investigated. The hydrodynamic memory effect is approximated by a higher order differential equation without convolution. The ship is modeled as a non-uniform Timoshenko beam. Numerical calculations are presented for the S175 Containership translating with the forward speed in regular waves. The approach described in this paper can be used in evaluating ship motions and wave loads in extreme wave conditions and validating nonlinear phenomena in ship design.

Rip Current Sensitive Analysis Using Rose Diagram for Wave-Induced Current Vectors at Haeundae Beach, Korea (해빈류 벡터 장미도를 통한 해운대 해수욕장의 이안류 민감도 분석)

  • Kim, Dong Hee;Lee, Sahong;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.320-326
    • /
    • 2016
  • Rip current forecasts, based on intensity, are marked in four levels—notice, watch, warning, and danger. However, numerical results are represented by current vectors, whose magnitudes are then converted into predictive levels. In the present study, the rose diagram is adapted as a determinative forecasting index and examined for the case of an ideal rip channel consisting of surface, bottom, and averaged currents. Further, it is employed in the sensitivity analysis of wave-induced currents generated by wave conditions at the Haeundae Beach. The simulation of surface onshore and bottom undertow currents is accomplished by including a mass flux term in the wave-averaged continuity equation.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Numerical Analysis of Synchronous Edge Wave Known as the Driving Mechanism of Beach Cusp (Beach Cusp 생성기작으로 기능하는 Synchronous Edge Wave 수치해석)

  • Lee, Hyung Jae;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2019
  • In this study, we carried out the 3D numerical simulation to investigate the hydraulic characteristics of Synchronous Edge wave known as the driving mechanism of beach cusp using the Tool Box called the ihFoam that has its roots on the OpenFoam. As a wave driver, RANS (Reynolds Averaged Navier-Stokes equation) and mass conservation equation are used. In doing so, we materialized short-crested waves known as the prerequisite for the formation of Synchronous Edge waves by generating two obliquely colliding Cnoidal waves. Numerical results show that as can be expected, flow velocity along the cross section where waves are focused are simulated to be much faster than the one along the cross section where waves are diverged. It is also shown that along the cross section where waves are focused, up-rush is moving much faster than its associated back-wash, but a duration period of up-rush is shortened, which complies the typical characteristics of nonlinear waves. On the other hand, due to the water-merging effect triggered by the redirected flow toward wave-diverging area at the pinacle of run-up, along the cross section where waves are diverged, offshore-ward velocity is larger than shore-ward velocity at the vicinity of shore-line, while at the very middle of shoaling process, the asymmetry of flow velocity leaned toward the shore is noticeably weakened. Considering that these flow characteristics can be found without exception in Synchronous Edge waves, the numerical simulation can be regarded to be successfully implemented. In doing so, new insight about how the boundary layer streaming occur are also developed.