• Title/Summary/Keyword: wave concept

Search Result 346, Processing Time 0.026 seconds

Fatigue Strength Assessment of a Ship Structures using the Influence Coefficient Concept and Spectral Analysis Technique (영향계수법과 스펙트럼 해석법을 이용한 선체의 피로강도평가)

  • Nho, I.S.;Kim, J.K.;Yoon, J.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.75-84
    • /
    • 1997
  • The up-to-date fatigue strength assessment system for ship structures was developed based on the spectral analysis method and numerical calculation for a membrane type LNG carrier was carried out to verify the effectiveness of the developed system. The wave induced loads acting on the ship's hull were calculated based on strip theory. And introducing the concept of influence factor and 3-D fine mesh structural analysis, direct calculation of long-term distribution of wave induced stress components was realized. Using the derived long term distribution of stress components and Miner-Parmgren's linear damage accumulation rule, fatigue strength of structural components were investigated.

  • PDF

Analysis of Frequency Selective Surface on Isotropic/Anisotropic Layers Using WCIP Method

  • Titaouine, Mohammed;Gomes, Alfredo Neto;Baudrand, Henry;Djahli, Farid
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 2007
  • The wave concept iterative procedure (WCIP) is used to analyze arbitrarily shaped frequency selective surfaces (FSS). The WCIP method is developed from the fast modal transform based on a two-dimensional fast Fourier transform algorithm. Using the proposed procedure, less computing time and memory are needed to calculate the scattering parameters of the FSS structure. The method is applied to the modeling of an FSS structure of a rectangular patch and a comparison with experimental results confirms good agreement.

  • PDF

Parametric density concept for long-range pipeline health monitoring

  • Na, Won-Bae;Yoon, Han-Sam
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.357-372
    • /
    • 2007
  • Parametric density concept is proposed for a long-range pipeline health monitoring. This concept is designed to obtain the attenuation of ultrasonic guided waves propagating in underwater pipelines without complicated calculation of attenuation dispersion curves. For the study, three different pipe materials such as aluminum, cast iron, and steel are considered, ten different transporting fluids are assumed, and four different geometric pipe dimensions are adopted. It is shown that the attenuation values based on the parametric density concept reasonably match with the attenuation values obtained from dispersion curves; hence, its efficiency is proved. With this concept, field engineers or inspectors associated with long-range pipeline health monitoring would take the advantage of easier capturing wave attenuation value, which is a critical variable to decide sensor location or sensors interval.

Generation of a plane-wave field by point focusing of acoustic potential energy on the radiation sphere in the wavenumber domain (파수 영역의 방사 구면에서 음향 에너지 집중을 통한 평면파 생성 방법)

  • Chang, Ji-Ho;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.820-823
    • /
    • 2007
  • In the wavenumber domain, each point on a radiation sphere indicates a plane wave of the frequency corresponding to radius of the sphere and the position on the sphere shows propagating direction of the plane wave. This concept is extended from the research by Choi[1] where he focus acoustic potential energy at a point on a radiation sphere. Here we propose the method to focus the energy at a point on the radiation sphere, as a result, we can easily generate a plane wave which propagates to any direction that we want.

  • PDF

Fast Simulation of Wind Waves along the Korean Coast Induced by Typhoon Nabi, 2005 (태풍 나비에 의한 한국 연안 태풍파의 신속 모의)

  • Lee, Jung-Lyul;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.567-573
    • /
    • 2006
  • An efficient typhoon wave-generating model is applied to northeast Asia sea zone presented that can be used by civil defense agencies for real-time prediction and fast warnings on typhoon-generated wind wave and storm surge. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. The results simulated along the Korean coasts during Typhoon Nabi (2005) showed reasonable agreement with the recorded wind waves.

  • PDF

Effects of d-wave symmetry on the critical current of YBCO step-edge Josephson junction

  • Hwang, Yun-Seok;Moon, Sunk-Yung;Ahn, Jong-Rok;Lee, Soon-Gul;Kim, Jin-Tae
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.99-102
    • /
    • 2000
  • We have studied the effects of d-wave symmetry on the critical current of YBa$_2$Cu$_3$O$_7$ step-edge Josephson junctions. The critical current along various misorientation angle was measured and analyzed with the concept of grain-boundary junctions with d-wave symmetry. Experimental results of c-oriented YBCO step-edge junctions with various in-plane misorientation angles were qualitatively in good agreement with the theory. The out-of-plane misorientation angle is usually formed between two grains with the c axes perpendicular to each other and is normally not controllable.

  • PDF

Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces (파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동)

  • 홍남식;이상화
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

The vibration exercise device development which uses the sonic wave (음파를 이용한 진동운동기구개발)

  • Min, Jin-Yeong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.135-136
    • /
    • 2008
  • By applying sonic wave technology in Vibration Exercise Equipment, we introduced an completely new concept of device into the fitness and medical industry creating a new trend. Sonic Vibration Exercise Equipment which got over the limit of technology will be easily accessible not only by professional athletes but also by ordinary users and even minority groups such as disabled, elderly, children.

  • PDF

A Fast Fault Location Method Using Modal Decomposition Technique of Traveling Wave (진행파 모드 분해 기법을 이용한 고속 고장점 표정)

  • Hong, Jun-Hee;Cho, Kyung-Rae;Kim, Sung-Soo;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.95-98
    • /
    • 1995
  • In this paper, a good fault location algorithm will be presented, which uses novel signal processing techniques and takes a new paradigm to overcome some drawbacks of the conventional methods. The main feature of the method is that it uses the high frequency components in fault signal and considers the influence of the source network by using a traveling wave concept.

  • PDF

Experimental Study of Wave-Absorbing Performance by Horizontal Punching Plates (수평형 타공판에 의한 소파성능의 실험적 연구)

  • Jung H. J.;Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.40-48
    • /
    • 1999
  • Wave absorbing system is needed at various kinds of wave basins (wave flume, towing tank, square tank) for the model test related to the ocean engineering. In this paper, the performance of wave absorbing system with new concept is estimated throughout the experiments. Herein, the wave absorbing system is designed by punching plate with a given porosity which is installed horizontally and submerged near the water surface. As the incident wave generated by a wave maker advances above a punching plate, the strong jet flow is formed near a hole of punching plate. As a result, wave energy is dissipated into heat energy, Systematic model tests were conducted at KRISO to verify the performance of the wave absorber using a punching plate. It was found that the reflection coefficient of wave absorber is deeply dependent on both the porosity and the submerged depth of a punching plate. Inclined installation of a punching plate shows better performance than a horizontal one within a certain inclined angle.

  • PDF