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The wave concept iterative procedure (WCIP) is used to 
analyze arbitrarily shaped frequency selective surfaces 
(FSS). The WCIP method is developed from the fast 
modal transform based on a two-dimensional fast Fourier 
transform algorithm. Using the proposed procedure, less 
computing time and memory are needed to calculate the 
scattering parameters of the FSS structure. The method is 
applied to the modeling of an FSS structure of a 
rectangular patch and a comparison with experimental 
results confirms good agreement. 
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I. Introduction 

Frequency selective surfaces (FSSs) find widespread 
applications as spatial filters for antenna and infrared 
applications and so on [1], [2]. The analysis of the FSS 
structures can be carried out by the immittance approach in 
conjunction with the method of moments [3]. Even though the 
latter approach provides good results, the WCIP method offers 
two major advantages, namely, simplicity of use and no 
limitation on the form of the patch. Moreover, a very important 
gain in computation time is obtained by the use of the two-
dimensional fast Fourier transform (FFT) algorithm [4]. 

The proposed method is able to characterize FSS structures of 
arbitrarily shaped patches deposited on multilayer 
isotropic/anisotropic dielectrics and is based upon a multiple 
reflection procedure. In this method, an FSS is considered as a 
periodic structure where the unit cell is analyzed independently 
to give the characteristics of the overall FSS structure. Analysis 
using the WCIP is carried out via two major steps which are 
repeated until convergence is reached. The two steps include 
scattering of the normal incident wave at the interface, 
characterized by the presence of the metallic patch in the spatial 
domain, and reflection from the closing ends of the box in which 
the unit cell can be hypothetically contained. Each mode 
reflected from the closing ends is characterized by a given 
reflection coefficient. Hence, a decomposition of the wave at the 
periodic wall as guide modes (transverse electromagnetic, TEM; 
transverse electric, TE; and transverse magnetic, TM modes) 
should take place by the use of the fast modal transform (FMT). 
The inverse FMT is adopted to return to the spatial domain. The 
procedure is repeated until convergence is obtained. 

The FSSs of rectangular patches deposited on two 
isotropic/anisotropic dielectric layers are considered for the 
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different substrate parameters of cell and patch dimensions. 
Good agreement is observed when the obtained results are 
compared to published experimental and simulated results. 

II. Theory 

The FSS shown in Fig.1 consists of a periodic array of 
arbitrarily shaped patches deposited on a multilayer uniaxial 
anisotropic substrate. The permittivity tensor iε  of the i-th 
dielectric layer is given by [5]                                       
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where i designates the layer number from 2 to n. 
In the WCIP method, the FSS is seen as a periodic structure 

and its analysis is reduced to the analysis of the repeated 
structure, the unit cell. The periodic walls, represented by 
dashed lines in Fig. 1, are assumed to separate adjacent cells. 
Figure 2(a) represents the unit cell to be analyzed. 

The WCIP is based on a transverse wave’s formulation. For 
the N-layer FSS shown in Fig. 2(b), the analysis is reduced to 
the case of the two-media wave problem illustrated in Fig. 3. 

The incident waves iA and the scattered waves iB are 
given in terms of the transverse electric and magnetic fields at 
the interface as [6] 
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where i indicates the medium 1 or 2, Zoi stands for the 
characteristic impedance of the same medium, and n  is the 
outward vector normal to the interface. 

For the sake of simplicity, the surface current density is 
introduced as 

→→→
∧= nHJ Tii .                 (3) 

From (2) and (3), the transverse waves )(k
iA  and )(k

iB  can 
be used to calculate the tangential electric fields and the current 
intensity on each of the two sides of the interface as 

( )
( ).1

ii
oi

i

iioii

BA
Z

J

BAZE

−=

+=
               (4) 

At the k-th iteration, the incident waves )(k
iA are scattered by 

the interface to give rise to the waves )(k
iB . They are 

 

Fig. 1. Geometry of arbitrarily shaped FSS on n multilayer 
substrate with normal incidence. 

y 

x

z

kinc

b 

a

h2

h3

hi

hn

hn-1

 
 

 

Fig. 2. (a) The unit cell in the FSS structure and (b) a section of 
unit cell along ll’ axis. 
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Fig. 3. Two-media problem as seen by the WCIP. 
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A scattering operator, ΩŜ , is defined in the spatial domain 
and accounts for the boundary conditions. 

The scattered waves )(k
iB will be reflected to generate the 

new incident waves to which the incident source waves are to 
be added as  
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where 0A  denotes the incident source waves and iΓ̂  is the 
reflection operator which is defined in the spectral domain.  

1. Scattering Operator Determination   

The interface domain consists of two sub-domains: a 
dielectric domain HI and a metal domain HM. Using the 
boundary conditions of each domain, the scattering operator 

ΩŜ  can be determined. 

A. Metal Domain Scattering Operator MŜ   

On this part of the interface the tangential electric field is 
canceled on both media. The boundary conditions of this 
domain are given by 
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Substituting (4) into (7) results in 
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The metal domain scattering operator MŜ  is given in terms of 
the metallic domain generator HM by 
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Hm is a Heaviside unit step defined as 

⎩
⎨
⎧

=
.otherwise,0

metal,theon,1
MH  

B. Dielectric Domain Scattering Operator IŜ   

The boundary conditions on a dielectric domain are given as 
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Taking (4) and replacing it into (11), the scattered waves 
iB are found to be related to the incident waves iA  as 
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The dielectric domain scattering operator IŜ is given in 
terms of the dielectric domain generator HI by 
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HI is a Heaviside unit step defined as 

⎩
⎨
⎧

=
.otherwise,0

,dielectrictheon,1
IH          (15) 

C. The Scattering Operator at the Interface Ω  

The addition of the scattering operators MŜ  and 
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IŜ enables the definition of the scattering operator ΩŜ  at the 
interfaceΩ as 
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2. Reflection Operator Determination   

The modes are coupled in the space domain but this is not 
the case in the modal domain. Each mode is reflected from the 
closing ends by its own reflection coefficient and the operation 
is done in the modal domain. To access the modal domain, 
FMT is used; to go back to the spatial domain, FMT-1 is used.  

The reflection coefficient in the modal domain is given by 
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where α
mnYi  is the admittance of the mn-th mode at the 

medium i and α stands for the modes TE or TM. 
When no closing ends exist, α

mnYi  can be calculated by [7] 
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In (18), εo, εri, and μo are the permittivity of the vacuum, the 
relative permittivity of the medium i, and the permeability of 
the vacuum, respectively, and α

mnYi  is the admittance 
brought to the interface Ω. 

When the structure along the z axis is terminated in a 
metallic wall (short circuit), the admittance seen by each mode 
at the interface is given by 
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where hi is the substrate thickness of the medium i. If a 
termination was an open circuit (no metallic wall at the end of 
the medium i), the admittance seen by each mode at the 
interface is given by 
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3. N-Layer FSS Problem as a Two-Media Problem 

The mode admittance at the interface is seen from the 
equivalent medium, or medium 2 in our case, as a load brought 
toward this interface. In fact, the load is the mode admittance of 
the N-th layer as shown in Fig. 4. In the figure, Q2, Q 3,…, Q N-1 

are two port networks of the guide of lengths h2, h 3 , and h N-1 

and propagation constants ,and,,, )1()3()2( −N
mnmnmn γγγ  

respectively. The layer N ends with an open circuit and the 
corresponding modal admittance YN is given by (21). 

The modal admittance seen at the interface between layers 
N-1 and N-2 is [8] 
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and the modal admittance seen at the interface between layers 
i-2 and i-1 can be calculated by 
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The modal admittance seen at the interface Ω on which the 

metallic patch is etched is given by the same formula as 
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The term α
)2(mnYi  is calculated only once at the beginning 

of the iterations. Thus, the multilayer problem of Fig. 2 can be 
 

 

Fig. 4. Equivalent circuit of the N layers FSS unit cell. 
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reduced to an equivalent of the two-media problem of Fig. 3. 

4. Fast Modal Transform (FMT) 

The FMT/FMT-1 pair permits movement from the spatial 
domain to the modal domain and back to the spatial domain. It 
is summarized in the following two equations, for which the 
development is detailed in the appendix: 
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5. FSS on Anisotropic Layers 

The anisotropy of the layers is taken into account in the 
analysis by the determination of the equivalent relative 
isotropic layers. When εxx=εyy, the parameters of this equivalent 
isotropic layer are given by [9] 
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where h is the thickness of the anisotropic substrate. 

III. Results and Discussion 

The WCIP is used to analyze the rectangular FSS of a 
repeated structure shown in Fig. 5.  

The structure consists of four layers in which the first and the 
last are air. Figure 6 represents the reflected power and the 
transmitted power obtained by the WCIP method when a 
normal incidence is considered. A grid of 80 by 80 pixels is 
used to define the interface and the results are recorded after 
 

 

Fig. 5. Repeated unit cell in the rectangular FSS structure. 
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Fig. 6. Variation of the transmission power and the reflected 
power versus frequency. 
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Fig. 7. Variation of the transmission power and the reflected 
power versus frequency on two isotropic layers. 

3 4 5 6 7 8 9 10

0

-5

-10

-15

-20

-25

-30

a=b=1.8cm 
W=0.6cm 
L=1.2cm 
h2=h3=0.15cm
εr2=εr3=4.4 

|S11|2(dB) with WCIP 
|S12|2(dB) with WCIP 
|S12|2(dB) experiment [3] 
|S12|2(dB) simulation [3] 

Frequency (GHz) 

 
 
600 iterations. As shown in Fig. 6, the structure acts as a stop 
band filter. Resonance occurs at about 17.3 GHz. It is clear that 
a good agreement with experimental results is obtained. 

In Fig. 7, layers 2 and 3 are taken of the same isotropic 
material and of the same thickness. The numerical and 
measured results are plotted in the same figure. A good 
agreement is recorded. 

Figure 8 shows the FSS of rectangular patches deposited on 
two anisotropic layers. A grid of 80 by 80 pixels is used and the 
results are recorded after 800 iterations. Resonance occurs at 
about 8.4 GHz compared to 8.2 GHz obtained for the same 
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Fig. 8. Variation of transmission power and reflected power
versus frequency on two anisotropic layers. 
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Fig. 9. Behaviour of reflected power from the FSS and
transmitted power through the same FSS. 
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parameters in [3].  

Figure 9 represents the reflected power and the transmitted 
power versus frequency for a suspended FSS deposited on an 
anisotropic layer. Resonance is seen at 23.5 GHz. 

The difference between results obtained by the WCIP 
method and the experimental results of reference [3] presented 
in Figs. 6 and 7 is due to the insufficient number of pixels used 
to define the interface Ω. Increasing the number of pixels leads 
to an improvement in the obtained results but also increases the 
computing time and the memory needed. Generally, 
anisotropic dielectrics are characterized by fewer losses 
compared to isotropic dielectrics.  

Figures 10 and 11 show the computed transmission power 

 

Fig. 10. Variation of transmission power and reflected power versus 
frequency on two dielectric layers obtained by the WCIP 
method. 
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Fig. 11. Variation of transmission power and reflected power versus 
frequency on two dielectric layers obtained by the WCIP 
method.
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and reflection power when the third layer is an isotropic 
Epsilam-10 and when it is isotropic pyrolitic-boron-nitride, 
respectively. It can be noticed that the predicted resonant 
frequency of the FSS when the second layer is isotropic with a 
relative permittivity of 13 is below the predicted resonant 
frequency of the same FSS when the second layer is made of 
an anisotropic Epsilam-10, whereas the predicted resonant 
frequency of the FSS when the second layer is an isotropic 
substrate with a relative permittivity of 10.2 is above the 
predicted resonant frequency of the FSS when the second layer 
is assumed to be an anisotropic Epsilam-10. 
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IV. Conclusion 

A simple and efficient method for the analysis of the FSS of 
arbitrarily shaped conducting patches was presented. Flexible 
selectivity was achieved when adopting anisotropic multilayer 
configurations in FSS realization. By using simple relations, 
the multilayer problem was accounted for by the WCIP 
method without leading to a heavy computing time. The choice 
of the number of pixels used to define the interface was based 
on achieving a compromise between the precision of the 
obtained results and the time consumption. Simulated results 
obtained by WCIP are in good agreement with measurements 
and the literature. Moreover, the WCIP method holds strongly 
for the analysis of co-planar structures. 

Appendix. FMT and FMT-1 Development 

The transverse modes basis functions for periodic walls are 
given by 
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The electric field can be projected on these basis functions as 
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To get the benefit of the FFT algorithm, the Cartesian basis is 
adopted on which the electric field E is projected, leading to 
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Using the two-dimensional FFT algorithm, Exmn and Eymn 
can be obtained easily from Ex(x,y) and Ey(x,y), respectively. 

Projecting Ex(x,y) and Ey(x,y) on the modal basis results in 
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Replacing Ex(x,y) and Ey(x,y) leads to 
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The different scalar products can be calculated and are given 
by 
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Thus, Exmn and Eymn can be calculated by 
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Exmn and Eymn can be written more concisely as 



ETRI Journal, Volume 29, Number 1, February 2007 Mohammed Titaouine et al.   43 

.
TM
mn

TE
mn

ymnxmn

xmnymn

ymn

xmn

B

B
KK

KK
E
E

−
=  

Hence, the transition from the modal domain to the Fourier 
domain (spectral domain) is obtained as a simple multiplication 
by the transition operator 1ˆ −T  given as 
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On the other hand, the transition from the Fourier domain to 
the modal domain can be obtained by calculation of the inverse 
of the transition operator 1ˆ −T given by 
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The amplitude of modes can be calculate d using 
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The FMT/FMT-1 pair can be summarized as 
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For the (0,0) mode corresponding to the TEM mode, it is 
clear that it is supported by the periodic structure even though 
in the derivations this case leads to an undefined result arising 
from the division by zero. From the above development, two 
perpendicular TEM modes exist. One is to be polarized along 
TE modes and the other polarized along TM modes. 

In the derivation of the FMT and FMT-1, the electric field is 
taken only as an example. In fact, in the iterative method, the 
FMT/FMT-1 pair is applied to the diffracted wave Bi and the 
reflected wave Ai. 
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