• 제목/요약/키워드: wave climate

검색결과 227건 처리시간 0.025초

관측 자료와 RCP8.5 시나리오를 이용한 우리나라 극한기온의 월별 변화 (Monthly Changes in Temperature Extremes over South Korea Based on Observations and RCP8.5 Scenario)

  • 김진욱;권원태;변영화
    • 한국기후변화학회지
    • /
    • 제6권2호
    • /
    • pp.61-72
    • /
    • 2015
  • In this study, we have investigated monthly changes in temperature extremes in South Korea for the past (1921~2010) and the future (2011~2100). We used seven stations' (Gangneung, Seoul, Incheon, Daegu, Jeonju, Busan, Mokpo) data from KMA (Korea Meteorological Administration) for the past. For the future we used the closest grid point values to observations from the RCP8.5 scenario of 1 km resolution. The Expert Team on Climate Change Detection and Indices (ETCCDI)'s climate extreme indices were employed to quantify the characteristics of temperature extremes change. Temperature extreme indices in summer have increased while those in winter have decreased in the past. The extreme indices are expected to change more rapidly in the future than in the past. The number of frost days (FD) is projected to decrease in the future, and the occurrence period will be shortened by two months at the end of the $21^{st}$ century (2071~2100) compared to the present (1981~2010). The number of hot days (HD) is projected to increase in the future, and the occurrence period is projected to lengthen by two months at the end of the $21^{st}$ century compared to the present. The annual highest temperature and its fluctuation is expected to increase. Accordingly, the heat damage is also expected to increase. The result of this study can be used as an information on damage prevention measures due to temperature extreme events.

IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향 (The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports)

  • 정연앙;정효상;류찬수
    • 통합자연과학논문집
    • /
    • 제4권1호
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

태풍의 풍향특성을 고려한 천해파 산정에 관한 연구 (A Study on the Numerical Calculation for Shallow Water Waves Considering the Wind Direction Characteristics of Typhoon)

  • 이경선;김정태;류청로
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2007
  • While a typhoon is traveling, characteristics of its wind fields are continuously changing, producing severe changes in local water level and wave conditions, especially, when a typhoon comes into shallow water. However, there have not been many studies related to local typhoon effects, especially, considering real time changes of wind direction related to the coastal topography. In the study, the characteristics of the wind field by typhoon and topographical characteristics in shallow water are considered, as well as conditions of wave climate estimation. These are performed by the SWAN (Simulating waves nearshore) model, in order to estimate the growth of wave energy due to the wind field. It can be strongly suggested that the wave energy of theof an inner bay should be estimated when the direction of the bay entrance and the wind direction of the typhoon are identical. The result of the numerical calculations is in better agreement with the observed data than the result of the conventional estimation techniques.

해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화 (Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos)

  • 유제선;신동민;조용식
    • 한국해안·해양공학회논문집
    • /
    • 제21권2호
    • /
    • pp.154-163
    • /
    • 2009
  • 해안에서 입사파향은 일반적으로 실측 파랑자료로부터 생성한 파향 스펙트럼 분석을 통하여 구하지만, 파향의 실측기법은 현장 계기설치시 많은 인력과 비용이 소요되기 때문에 전 쇄파지역에 걸쳐 입사파향을 관측하기에는 어려움이 따른다. 이러한 이유로, 본 연구는 해안 디지털 비디오 자료에 나타나는 입사파의 파봉선을 이용하여 쇄파지역에서 입사파의 변화를 관측하는 기술을 제안한다. 파봉선은 이미지 상에서 선인식 기법을 이용하여 이미지 강도가 큰 픽셀들을 추적해 나감으로써 추출한다. 입사파향은 추출된 파봉선의 일차미분값, 즉, 실제 평면좌표 공간에서 파봉선의 기울기를 계산하여 구한다. 비디오 자료로부터 입사파향의 측정결과는 실측 파랑자료의 파향 스펙트럼으로부터 구한 파향 계산결과와 비교적 잘 일치한다.

Analysis of Wave Transmission Characteristics on the TTP Submerged Breakwater Using a Parabolic-Type Linear Wave Deformation Model

  • Jeong, Jin-Hwan;Kim, Jin-Hoon;Lee, Jung-Lyul
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.82-90
    • /
    • 2021
  • Owing to the advantages of assuring the best views and seawater exchange, submerged breakwaters have been widely installed along the eastern coast of Korea in recent years. It significantly contributes to promoting the advancement of shorelines by partially inhibiting incident wave energy. Observations were carried out by a pressure-type wave gauge in the Bongpo Beach to evaluate the coefficients of wave transmission via a submerged breakwater, and the results obtained were compared with those of existing conventional equations on the transmission coefficient derived from hydraulic experiments. After reviewing the existing equations, we proposed a transmission coefficient equation in terms of an error function. Although it exhibited robust relationships with the crest height and breaking coefficient, deviations from the observed data were evident and considered to be triggered by the difference in the incident wave climate. Therefore, in this study, we conducted a numerical experiment to verify the influence of wave period on the coefficients of wave transmission, in which we adopted a parabolic-type mild-slope equation model. Consequently, the deviation from calculated results appears to practically cover all deviation range in the observed data. The wave period and direction of the incident wave increased, the transmission coefficient decreased, and the wave direction was determined to demonstrate a relatively significant influence on the transmission coefficient. It was inferred that this numerical study is expected to be used practically in evaluating the design achievement of the submerged breakwater, which is adopted as a countermeasure to coastal beach erosion.

폭염 취약지역과 건강 피해 발생의 공간적 일치성에 따른 지역 유형 분석 (Analysis of regional type according to spatial correspondence between heat wave vulnerable areas and health damage occurrence)

  • 황희수;최지윤;강정은
    • 한국지리정보학회지
    • /
    • 제26권1호
    • /
    • pp.89-113
    • /
    • 2023
  • 본 연구는 폭염 취약지역을 도출하고, 폭염 피해와의 공간적 일치성 분석을 통해 공간 유형화 및 정책적 방향성에 대해 논의하고자 한다. 연구 방법은 IPCC의 기후변화 취약성 평가와 공간통계 비교분석을 활용하였으며, 폭염이 가장 극심했던 2018년을 포함하는 5개년(2015~2019)의 전국 시군구를 대상으로 하였다. 폭염 취약성은 다양한 요소 중 폭염 영향을 나타내는 폭염일수(노출)가 가장 큰 영향을 미치고 있었으며, 폭염에 대한 민감도와 적응 능력은 지역의 특성에 따라 경향성이 나타나는 것으로 확인되었다. 폭염 취약성과 피해의 관계는 공간적 일치성을 통해 4개 유형으로 구분하였으며, 취약성과 피해가 정의 관계를 가지는 Hot to Hot, Cold to Cold 유형과 역의 관계를 가지는 Hot to Cold, Cold to Hot 유형을 도출하였다. 이는 유형별로 지역의 특성과 현황이 상이하므로 유형에 따라 개선을 위한 정책과 연구의 방향성을 달리 설정해야 한다는 시사점을 남긴다. 해당 연구는 폭염 취약성과 피해를 함께 고려하여 지역을 유형화하고, 유형별 대응 방향성에 대해 살펴본 점에서 추후 폭염 관련 정책 수립에 기초자료로 활용되기를 기대한다.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

엔진 시동용 소형선 탑재형 파력 발전 시스템 (The Wave Power Generator on Small Ship for Charging Engine Start-Up Battery)

  • 류기수;강성진;유병석
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.439-446
    • /
    • 2022
  • Efforts to reduce carbon dioxide(CO2) emissions are being carried out due to climate environmental problems. Eco-friendly ships are also being developed, and various energy saving measures have been developed and applied. In ships, researches have been conducted in various fields such as electric propulsion system and energy saving devices. In addition, the development of ships using various renewable energy, such as kite using wind power and wind power generation, has been carried out. This paper proposes a plan to use renewable energy for ships by applying wave generators to small ships. In 2016, 130 small domestic ships drifted by sea due to discharge of starting storage batteries, and discharge cases accounted for the largest portion of the causes of domestic ship accidents. This is due to the excessive use of storage batteries for starting the main engine by departing in a weak storage battery state for small ships. Accordingly, two type wave power generators - opened flow wave power generator and enclosed vibrator type wave power generator - are developed for charging a starting storage battery when the ships are stationary at sea or port. Opened flow wave power generator utilizes the flow of fluid in the ship by using wave induced ship motion. Enclosed vibrator type wave power generator utilizes the pendulum kinetic energy located in a ship due to wave induced ship motion.

서울시 기후변화 영향평가 및 적응대책 수립: 폭염영향을 중심으로 (Local Adaptation Plan to Climate Change Impact in Seoul: Focused on Heat Wave Effects)

  • 김은영;전성우;이정원;박용하;이동근
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.71-80
    • /
    • 2012
  • Against the backdrop of the clear impact of climate change, it has become essential to analyze the influence of climate change and relevant vulnerabilities. This research involved evaluating the impact of heat waves in Seoul, from among many local autonomous bodies that are responsible for implementing measures on adapting to climate change. To carry out the evaluation, the A1B scenario was used to forecast future temperature levels. Future climate scenario results were downscaled to $1km{\times}1km$ to result in the incorporation of regional characteristics. In assessing the influence of heat waves on people-especially the excess mortality-we analyzed critical temperature levels that affect excess mortality and came up with the excess mortality. Results of this evaluation on the impact of climate change and vulnerabilities indicate that the number of days on which the daily average temperature reaches $28.1^{\circ}C$-the critical temperature for excess mortality-in Seoul will sharply increase in the 2050s and 2090s. The highest level of impact will be in the month of August. The most affected areas in the summer will be Songpa-gu, Gangnam-gu, and Yeongdeungpo-gu. These areas have a high concentration of residences which means that heat island effects are one of the reasons for the high level of impact. The excess mortality from heat waves is expected to be at least five times the current figure in 2090. Adaptation plan needs to be made on drawing up long-term adaptation measures as well as implementing short-term measures to minimize or adapt the impact of climate change.

현업 기후예측시스템에서의 지면초기화 적용에 따른 예측 민감도 분석 (Application of Land Initialization and its Impact in KMA's Operational Climate Prediction System)

  • 임소민;현유경;지희숙;이조한
    • 대기
    • /
    • 제31권3호
    • /
    • pp.327-340
    • /
    • 2021
  • In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.