• 제목/요약/키워드: wave climate

검색결과 227건 처리시간 0.024초

CMIP5 기후 모형에서 나타나는 동아시아 한파의 특징 (Characteristics of East Asian Cold Surges in the CMIP5 Climate Models)

  • 박태원;허진우;정지훈;허창회
    • 대기
    • /
    • 제27권2호
    • /
    • pp.199-211
    • /
    • 2017
  • The cold surges over East Asia can be grouped to two types of the wave-train and the blocking. Recently, the observational study proposed new dynamical index to objectively identify cold surge types. In this study, the dynamical index is applied to the simulations of 10 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Focusing on assessment of cold surge simulation, we discuss characteristic of the wave-train and blocking cold surges in the climate models. The wave-train index (WI) and the blocking index (BI) based on potential temperature anomalies at dynamical tropopause over the subarctic region, the northeast China, and the western North Pacific enable us to classify cold surges in the climate models into two types. The climate models well simulate the occurrence mechanism of the wave-train cold surges with vertical structure related to growing baroclinic wave. However, while the wave-train in the observation propagates in west-east direction across the Eurasia Continent, most of the models simulate the southeastward propagation of the wave-train originated from the Kara Sea. For the blocking cold surges, the general features in the climate models well follow those in the observation to show the dipole pattern of a barotropic high-latitude blocking and a baroclinic coastal trough, leading to the Arctic cold surges with the strong northerly wind originated from the Arctic Sea. In both of the observation and climate models, the blocking cold surges tend to be more intense and last longer compared to the wave-train type.

Inner harbour wave agitation using boussinesq wave model

  • Panigrahi, Jitendra K.;Padhy, C.P.;Murty, A.S.N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.70-86
    • /
    • 2015
  • Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity to harbour site is established using Wave Model (WAM) hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW). A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW). Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.

기후변화에 따른 북서태평양에서의 미래 파랑 전망 (Projection of the Future Wave Climate Changes Over the Western North Pacific)

  • 박종숙;강기룡;강현석;김영화
    • 한국해안·해양공학회논문집
    • /
    • 제25권5호
    • /
    • pp.267-275
    • /
    • 2013
  • HadGEM2-AO 기후모델의 기후변화 시나리오 자료와 파랑 모델을 이용하여 기후변화에 따른 북서태평양에서의 미래 파랑 기후를 전망하였다. 21세기말 북서태평양에서 연 평균 풍속이 현재보다 낮아질 것으로 전망됨에 따라 연 평균 유의파고도 낮게 전망되었다. 현재 기후에 비해서 21세기 말 연평균 유의파고는 RCP4.5 시나리오의 경우 2~7% 감소하고, RCP8.5의 경우 4~11% 정도 감소하는 것으로 나타났다. 극한파랑의 경우도 유의파고 및 풍속이 현재에 비해서 감소할 것으로 전망되었다. 계절별로 분석한 결과 겨울철의 극한파랑은 연 극한 파랑과 비슷하게 감소하는 경향을 보인 반면, 여름철의 경우 북서태평양에서는 현재보다 증가할 것으로 나타나 미래에는 태풍의 강도가 강화 될 것으로 전망된다.

Estimation of Design Wave Height for the Waters around the Korean Peninsula

  • Lee, Dong-Young;Jun, Ki-Cheon
    • Ocean Science Journal
    • /
    • 제41권4호
    • /
    • pp.245-254
    • /
    • 2006
  • Long term wave climate of both extreme wave and operational wave height is essential for planning and designing coastal structures. Since the field wave data for the waters around Korean peninsula is not enough to provide reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. Basic data base of hindcasted wave parameters such as significant wave height, peak period and direction has been established continuously for the period of 25 years starting from 1979 and for major 106 typhoons for the past 53 years since 1951 for each grid point of the North East Asia Regional Seas with grid size of 18 km. Wind field reanalyzed by European Center for Midrange Weather Forecasts (ECMWF) was used for the simulation of waves for the extra-tropical storms, while wind field calculated by typhoon wind model with typhoon parameters carefully analyzed using most of the available data was used for the simulation of typhoon waves. Design wave heights for the return period of 10, 20, 30, 50 and 100 years for 16 directions at each grid point have been estimated by means of extreme wave analysis using the wave simulation data. As in conventional methodsi of design criteria estimation, it is assumed that the climate is stationary and the statistics and extreme analysis using the long-term hindcasting data are used in the statistical prediction for the future. The method of extreme statistical analysis in handling the extreme vents like typhoon Maemi in 2003 was evaluated for more stable results of design wave height estimation for the return periods of 30-50 years for the cost effective construction of coastal structures.

한파에 따른 표층수온의 지연시간 고찰 - 서해, 남해 - (Consideration of Time Lag of Sea Surface Temperature due to Extreme Cold Wave - West Sea, South Sea -)

  • 김주연;박명희;이준수;안지숙;한인성;권미옥;송지영
    • 해양환경안전학회지
    • /
    • 제27권6호
    • /
    • pp.701-707
    • /
    • 2021
  • 본 연구에서는 강한 한파가 발생했던 2018년과 온난 한파가 발생했던 2019년의 기온에 따른 수온의 반응 및 지연시간과 북풍계열 바람 빈도와의 상관관계를 분석하였다. 사용된 시간 자료는 국립수산과학원에서 제공하는 7개 지점 해역별 수온자료와 수온관측소 인근 7개 지점 AWS 기온자료를 이용하였다. 관측되지 못한 자료는 내삽법으로 근사값을 계산하였고, FIR Filter를 이용하여 자료의 주기성을 파악하였다. 그 결과, 강한 한파가 발생했던 2018년은 북풍계열 바람을 통해 차가운 공기가 남하하면서 기온을 하강시켜 전 해역에 저수온을 유발한 반면 온난 한파가 발생했던 2019년은 평년 수준의 기온으로 하강하였지만 수온은 크게 변화하지 않았다. 강한 한파가 발생했던 2018년 기온 하강에 따른 수온의 지연시간은 평균 14시간으로 0.7 이상의 높은 상관성을 나타냈고 온난 한파가 발생했던 2019년은 평균 지연시간이 20시간으로 0.44-0.67 사이의 상관성을 보였다. 본 연구를 통해 해역별로 기온 하강에 따른 표층수온의 반응을 해석하였고 지연시간을 파악함으로써 양식생물의 피해를 최소화하고 한파 피해의 신속한 대응에 기여할 수 것으로 기대한다.

제주특별자치도 상수도 기후위기 적응대책 연구 (A study on adaptation measures to climate crisis for water supply system of Jeju Special Self-Governing Province)

  • 김진근
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.447-456
    • /
    • 2023
  • Risk assessment on Jeju Special Self-Governing Province(JSSGP)'s water supply facilities and establishment of adaptation measures for climate crisis factors were implemented. JSSGP's vulnerability to the climate crisis was high in the order of drought, heat wave, heavy rain and strong wind. As a drought adaptation measure, policies of water saving and revenue water ratio improvement were considered. As for the heat wave adaptation measure, the introduction of an advanced water treatment process was suggested in response to the increase of algae cell number which resulting in taste and odor problem. As for heavy rain adaptation measures, the installation and operation of automatic coagulant injection devices for water purification plants that take turbid surface water were proposed. As a measure to adapt to strong winds, stabilization of power supply such as installation of dual power line was proposed in preparation for power outages. It is expected that water facilities will be able to supply high-quality tap water to customers even under extreme climate conditions without interruption through risk assessment for climate crisis factors and active implementation of adaptation measures.

직립방파제의 케이슨 활동에 미치는 기후변화영향에 대한 수심의 효과 (Influence of Water Depth on Climate Change Impacts on Caisson Sliding of Vertical Breakwater)

  • 김승우;김소연;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제24권3호
    • /
    • pp.179-188
    • /
    • 2012
  • 기후변화가 구조물의 안정성에 미치는 영향을 분석하기 위해 여러 수심에서 가상적으로 설계된 직립방파제의 성능을 평가하였다. 성능평가에서는 기후변화영향인 해수면 상승과 파고 증가를 고려한 성능설계법이 사용되었다. 성능설계법의 파랑변형 계산과정에서 많은 시간이 요구되는 문제를 극복하기 위해 범용 SWAN 모형에 인공신경망을 결합하였다. 학습된 인공신경망에 심해유의파고와 심해주파향 그리고 조위가 입력되면 구조물 위치에서 유의파고와 주파향이 신속하게 계산된다. 전반적으로 구조물의 안정성은 기후변화영향으로 감소하였지만 수심에 따라 서로 다른 경향을 보였다. 쇄파대 밖에서는 수심이 증가할수록 해수면 상승의 영향은 감소하고 파고 증가의 영향은 증가하였다. 한편, 쇄파대 내에서는 수심이 감소할수록 파고 증가와 해수면 상승의 영향 모두 감소하였다. 하지만 파고 증가의 영향이 해수면 상승의 영향보다 컸다. 이와 같은 결과를 반영하여 직립방파제의 유지보수 및 보강 대책을 수립해야 할 것이다.

제주도 기후변화 관련 상수도시설 취약성 평가 및 적응대책 (Water utilities vulnerability assessment and adaption strategies for climate change in Jeju province)

  • 김진근
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.517-526
    • /
    • 2018
  • Climate adaptation strategies for water utilities including 16 water treatment plants(WTPs) in Jeju were investigated. Drought, heat wave, and heavy rain were among the most significant climate factors affecting water utilities in Jeju. Heat wave increases water temperature, which in turn increases the concentration of algae, color, and odor materials. Some adaption strategies for the heat wave can be strengthening water monitoring and introducing advanced water treatments. Heavy rain increases raw water turbidity in surface water. The 7 WTPs that take raw water from streams or springs had a maximum turbidity of less than 50 NTU under heavy rain. However, due to concerns of turbidity spike in treated water, some WTPs discontinued intaking raw water when raw water turbidity increased more than 2 NTU. They instead received treated water from other WTPs which took groundwater for water supply. This happens because of the low skills of employees. Thus, there needs to be an increase in operator competency and upgrade of water facilities for the adaption of heavy rain. To improve adaption for the drought, there should be an increase in the capacity of intake facilities of surface water as well as a decrease in water loss. In addition, water consumption per person should be decreased.

서울시 폭염 취약지역의 공간적 패턴 및 적응능력 취약지역 분석 (An Analysis on the Spatial Patterns of Heat Wave Vulnerable Areas and Adaptive Capacity Vulnerable Areas in Seoul)

  • 최예술;김재원;임업
    • 국토계획
    • /
    • 제53권7호
    • /
    • pp.87-107
    • /
    • 2018
  • With more than 10 million inhabitants, in particular, Seoul, the capital of Korea, has already experienced a number of severe heat wave. To alleviate the potential impacts of heat wave and the vulnerability to heat wave, policy-makers have generally considered the option of heat wave strategies containing adaptation elements. From the perspective of sustainable planning for adaptation to heat wave, the objective of this study is to identify the elements of vulnerability and assess heat wave-vulnerability at the dong level. This study also performs an exploratory investigation of the spatial pattern of vulnerable areas in Seoul to heat wave by applying exploratory spatial data analysis. Then this study attempts to select areas with the relatively highest and lowest level of adaptive capacity to heat wave based on an framework of climate change vulnerability assessment. In our analysis, the adaptive capacity is the relatively highest for Seongsan-2-dong in Mapo and the relatively lowest for Changsin-3-dong in Jongno. This study sheds additional light on the spatial patterns of heat wave-vulnerability and the relationship between adaptive capacity and heat wave.

한반도 2016년 폭염에 여름철 계절안진동이 미친 영향 (Influence of Boreal Summer Intraseasonal Oscillation on the 2016 Heat Wave over Korea)

  • 이준이;김해정;정유림
    • 대기
    • /
    • 제29권5호
    • /
    • pp.627-637
    • /
    • 2019
  • Severe and long-lasting heat waves over Korea and many regions in the Northern Hemisphere (NH) during the 2016 summer, have been attributed to global warming and atmospheric teleconnection coupled with tropical convective activities. Yet, what controls subseasonsal time scale of heat wave has not been well addressed. Here we show a critical role of two dominant boreal summer intraseasonal oscillation (BSISO) modes, denominated as BSISO1 and BSISO2, on modulating temporal structure of heat waves in the midst of similar climate background. The 2016 summer was characterized by La Nina development following decay of strong 2015/2016 El Nino. The NH circumglobal teleconnection pattern (CGT) and associated high temperature anomalies and heat waves were largely driven by convective activity over northwest India and Pakistan during summer associated with La Nina development. However, the heat wave event in Korea from late July to late August was accompanied by the phase 7~8 of 30~60-day BSISO1 characterized by convective activity over the South China Sea and Western North Pacific and anticyclonic circulation (AC) anomaly over East Asia. Although the 2010 summer had very similar climate anomalies as the 2016 summer with La Nina development and CGT, short-lasting but frequent heat waves were occurred during August associated with the phase 1~2 of 10~30-day BSISO2 characterized by convective activity over the Philippine and South China Sea and AC anomaly over East Asia. This study has an implication on importance of BSISO for better understanding mechanism and temporal structure of heat waves in Korea.