DOI QR코드

DOI QR Code

Projection of the Future Wave Climate Changes Over the Western North Pacific

기후변화에 따른 북서태평양에서의 미래 파랑 전망

  • Park, Jong Suk (Laboratory, National Institute of Meteorological Research/Korea Meteorological Administration) ;
  • Kang, KiRyong (National Typhoon Center/Korea Meteorological Administration) ;
  • Kang, Hyun-Suk (Laboratory, National Institute of Meteorological Research/Korea Meteorological Administration) ;
  • Kim, Young-Hwa (Laboratory, National Institute of Meteorological Research/Korea Meteorological Administration)
  • 박종숙 (기상청 국립기상연구소 지구환경시스템연구과) ;
  • 강기룡 (기상청 국가태풍센터) ;
  • 강현석 (기상청 국립기상연구소 지구환경시스템연구과) ;
  • 김영화 (기상청 국립기상연구소 지구환경시스템연구과)
  • Received : 2013.07.24
  • Accepted : 2013.09.16
  • Published : 2013.10.31

Abstract

This study projected the future ocean wave climate changes based on global climate change scenario using the coupled climate model HadGEM2-AO according to the emission scenarios and using regional wave model. Annual mean significant wave height (SWH) is linked closely to annual mean wind speed during the forthcoming 21st Century. Because annual mean speed decreased in the western North Pacific, annual mean SWH is projected to decrease in the future. The annual mean SWH decreases for the last 30 years of the 21st century relative to the period 1971-2000 are 2~7% for RCP4.5 and 4~11% for RCP8.5, respectively. Also, extreme SWH and wind speed are projected to decrease in the future. In terms of seasonal mean, winter extreme SWH shows similar trend with annual extreme SWH; however, that of summer shows large increasing tendency compared with current climate in the western North Pacific. Therefore, typhoon intensity in the future might be more severe in the future climate.

HadGEM2-AO 기후모델의 기후변화 시나리오 자료와 파랑 모델을 이용하여 기후변화에 따른 북서태평양에서의 미래 파랑 기후를 전망하였다. 21세기말 북서태평양에서 연 평균 풍속이 현재보다 낮아질 것으로 전망됨에 따라 연 평균 유의파고도 낮게 전망되었다. 현재 기후에 비해서 21세기 말 연평균 유의파고는 RCP4.5 시나리오의 경우 2~7% 감소하고, RCP8.5의 경우 4~11% 정도 감소하는 것으로 나타났다. 극한파랑의 경우도 유의파고 및 풍속이 현재에 비해서 감소할 것으로 전망되었다. 계절별로 분석한 결과 겨울철의 극한파랑은 연 극한 파랑과 비슷하게 감소하는 경향을 보인 반면, 여름철의 경우 북서태평양에서는 현재보다 증가할 것으로 나타나 미래에는 태풍의 강도가 강화 될 것으로 전망된다.

Keywords

References

  1. Abdalla, S. and Cavaleri, L. (2002). Effect of wind variability and variable air density on wave modeling. J. Geophys. Res., 107(C7), 17-1.
  2. Baek, H.-J., Lee, J., Lee, H.-S., Cho, C., Kwon, W.-T., Marzin, C., Hyun, Y.-K., Gan, S.-Y., Kim, M.-J., Choi, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S. and Byun, Y.-H. (2012). Climate change in the 21st century simulated by HadGEM2-AO under Representative Concentration Pathways, Asia-Pacific Journal of Atmospheric Sciences, in revision.
  3. Bhattacharyya, G.K. and Johnson, R.A. (1977). Statistical concepts and methods. New York:Wiley.
  4. Boldingh Debernard, J. and Petter Roed, L. (2008). Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus A, 60(3), 427-438. https://doi.org/10.1111/j.1600-0870.2008.00312.x
  5. Bueh, C. (2003). Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios. Chin. Sci. Bull., 48, 1024-1030. https://doi.org/10.1007/BF03184220
  6. Cairesa, S., Swailb, V.R. and Wang, X.L. (2006). Projection and analysis of extreme wave climate. J. Climate, 19, 5581-5605. https://doi.org/10.1175/JCLI3918.1
  7. Chen, H.P., Sun J.Q. and Chen, X.L. (2012). The projection and uncertainty analysis of summer precipitation in China and the variations of associated atmospheric circulation field (in Chinese). Climatic and Environmental Research, 17(12), 171-183.
  8. Colle, B.A., Zhang, Z., Lombardo, K.A., Chang, E., Liu, P. and Zhang, M. (2013). Historical evaluation and future prediction of eastern North America and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. Journal of Climate, (2013).
  9. Cox, A.T. and Swail, V.R. (2001). A global wave hindcast over the period 1958-1997: Validation and climate assessment. J. Geophys. Res.:Oceans(1978-2012), 106(C2), 2313-2329.
  10. Dabang, J. and Huijun, W. (2005). Natural interdecadal weakening of East Asian summer monsoon in the late 20th century. Chin. Sci. Bull., 50(17), 1923-1929. https://doi.org/10.1360/982005-36
  11. Debernard, J., Saetra, O. and Roed, L.P. (2002). Future wind, wave and storm surge climate in the northern North Atlantic. Clim. Res. 23, 39-49. https://doi.org/10.3354/cr023039
  12. Ding, Y.H., Ren, G.Y., Zhao Z.C., Xu Y., Luo Y., Li Q. and Zhang J. (2007). Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci., 24, 954-971. https://doi.org/10.1007/s00376-007-0954-4
  13. Dobrynin, M., Murawsky, J. and Yang, S. (2012). Evolution of the global wind wave climate in CMIP5 experiments, Geophys. Res. Lett., 39(18).
  14. Graham, N.E., Cayan, D.R., Bromirski, P.D. and Flick, R.E. (2013). Multi-model projections of twenty-first century North Pacific winter wave climate under the IPCC A2 scenario. Climate Dynamics, 1-26.
  15. GRMA (2010), The wave Characteristic analysis in the coast of east sea. Gangwon Regional Meteorological Administration
  16. Giorgi, F. and Mearns, L.O. (1991). Approaches to the simulation of regional climate change: a review. Reviews of Geophysis, 29(2), 191-216. https://doi.org/10.1029/90RG02636
  17. Hasselmann, K., Barnett, T.P., Bouws, E., Carison, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell, W. and Walden, H. (1973). Measurements of windwave growth and swell decay during the Joint North Sea Wave Project(JONSWAP). Deut. Hydrogr. Z., A(8).
  18. Hemer, M.A., Wang, X.L., Weisse, R. and Swail, V.R. (2012). Advancing wind-waves climate science: The COWCLIP project. Bulletine of the American Meteorological Society, 93(6), 791-796. https://doi.org/10.1175/BAMS-D-11-00184.1
  19. Jiang, D. and Tian, Z. (2013). East Asian monsoon changes for the 21st century: Results of CMIP3 and CMIP5 models. Chinese Science Bulletin,1-9.
  20. Li, J., Wu, Z., Jiang, Z. and He, J. (2010). Can Global Warming Strengthen the East Asian Summer Monsoon?. J. Climate, 23, 6696-6705. https://doi.org/10.1175/2010JCLI3434.1
  21. Lo, J.C.F., Yang, Z.L. and Pielke, R.A. (2008). Assessment of three dynmical climate downscaling methods using the Weather Research and Forecationg(WRF) model. Journal of Geophysical Research: Atmospheres (1984-2012),113(D9).
  22. Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z.-C. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor M. and Miller H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  23. Mizuta, R. (2012). Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophysical Research Letters, 39(19).
  24. Mori, N., Yasuda, T., Mase, H., Tom, T. and Oku, Y. (2010). Projection of extreme wave climate change under the global warming, Hydrological Research Letters, 4, 15-19. https://doi.org/10.3178/hrl.4.15
  25. NIMR (2011), Report on climate changes scenario for the IPCC Fifth Assessment Report. National Institute of Meteorological Research
  26. Sasaki, W., Iwasaki, S.I., Matsuura, T., Iizuka, S. and Watabe, I. (2005). Changes in wave climate off Hiratsuka, Japan, as affected by storm activity over the western North Pacific. J. Geophys. Res., 110(C9), C09008.
  27. Sterl, A., Komen, G.J. and Cotton, P.D. (1998). Fifteen years of global wave hindcasts using winds from the European Centre for Medium-range Weather Forecasts reanalysis: validating the reanalyzed winds and assessing the wave climate. J. Geophys. Res.:Oceans(1978-2012), 103 (C3), 5477-5492.
  28. Sterl, A. and Caires, S. (2005). Climatology, variability and extrema of ocean waves: The web-based KNMI/ERA-40 wave atlas. Int. J. Climatology, 25(7), 963-977. https://doi.org/10.1002/joc.1175
  29. Tolman, H.L. (2002d). Testing of WAVEWATCH III version 2.22 in NCEP's NWW3 ocean wave model suite. Tech. Note 214, NOAA/NWS/NCEP/OMB, 99pp.
  30. Tolman, H.L. (2002e). User manual and system documentation of WAVEWATCH-III version 2.22. Tech. Note 222, NOAA/NWS/NCEP/MMAB, 133pp.
  31. Wang, X.L. and Swail, V.R. (2001). Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14(10), 2204-2221. https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2
  32. Wang, X.L. and Swail, V.R. (2002). Trends of Atlantic wave extremes as simulated in a 40-year wave hindcast using kinematically reanalyzed wind fields. Journal of climate, 15(9), 1020-1034. https://doi.org/10.1175/1520-0442(2002)015<1020:TOAWEA>2.0.CO;2
  33. Wang, X.L., Zwiers, F.W. and Swail, V.R. (2004). North Atlantic Ocean wave climate change scenarios for the twenty-first century. J. Climate, 17(12), 2368-2383. https://doi.org/10.1175/1520-0442(2004)017<2368:NAOWCC>2.0.CO;2
  34. Wang, X.L. and Swail V.R. (2006). Historical and possible future changes of wave heights in Northern Hemisphere oceans. Atmosphere-Ocean Interactions, 2, 240.
  35. WMO (1998). Guide to Wave Analysis and Forecasting. World Meteorological Organization. WMO-No. 702.
  36. Yong, H., Baoshu, Y., Perrie, W. and Yijun, H. (2008). Responses of summertime extreme wave heights to local climate variations in the East China Sea. Journal of Geophysical Research: Oceans(1978-2012),113(C9).

Cited by

  1. Development of a new armor unit against high waves vol.17, pp.6, 2016, https://doi.org/10.5762/KAIS.2016.17.6.737