Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.5.627

Influence of Boreal Summer Intraseasonal Oscillation on the 2016 Heat Wave over Korea  

Lee, June-Yi (Research Center for Climate Sciences and Department of Climate System, Pusan National University)
Kim, Hae-Jeong (APEC Climate Center)
Jeong, Yoo-Rim (APEC Climate Center)
Publication Information
Atmosphere / v.29, no.5, 2019 , pp. 627-637 More about this Journal
Abstract
Severe and long-lasting heat waves over Korea and many regions in the Northern Hemisphere (NH) during the 2016 summer, have been attributed to global warming and atmospheric teleconnection coupled with tropical convective activities. Yet, what controls subseasonsal time scale of heat wave has not been well addressed. Here we show a critical role of two dominant boreal summer intraseasonal oscillation (BSISO) modes, denominated as BSISO1 and BSISO2, on modulating temporal structure of heat waves in the midst of similar climate background. The 2016 summer was characterized by La Nina development following decay of strong 2015/2016 El Nino. The NH circumglobal teleconnection pattern (CGT) and associated high temperature anomalies and heat waves were largely driven by convective activity over northwest India and Pakistan during summer associated with La Nina development. However, the heat wave event in Korea from late July to late August was accompanied by the phase 7~8 of 30~60-day BSISO1 characterized by convective activity over the South China Sea and Western North Pacific and anticyclonic circulation (AC) anomaly over East Asia. Although the 2010 summer had very similar climate anomalies as the 2016 summer with La Nina development and CGT, short-lasting but frequent heat waves were occurred during August associated with the phase 1~2 of 10~30-day BSISO2 characterized by convective activity over the Philippine and South China Sea and AC anomaly over East Asia. This study has an implication on importance of BSISO for better understanding mechanism and temporal structure of heat waves in Korea.
Keywords
Boreal summer intraseasonal oscillation (BSISO); heat wave; global warming; El Nino and Southern Oscillation (ENSO); circumglobal teleconnection (CGT);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Blunden, J., and D. S. Arndt, 2017: State of the Climate in 2016. Bull. Amer. Meteor. Soc., 98, Si-S277, doi: 10.1175/2017BAMSStateoftheClimate.1.   DOI
2 Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: a review and revisit. Climate Dyn., 51, 4207-4227, doi:10.1007/s00382-017-3773-z.   DOI
3 Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 1403-1412, doi:10.1002/joc.4433.   DOI
4 Hsu, P.-C., J.-Y. Lee, K.-J. Ha, and C.-H. Tsou, 2017: Influences of boreal summer intraseasonal oscillation on heat waves in Monsoon Asia. J. Climate, 30, 7191-7211, doi:10.1175/JCLI-D-16-0505.1.   DOI
5 Hu, S., and A. V. Fedorov, 2017: The extreme El Nino of 2015-2016 and the end of global warming hiatus. Geophys. Res. Lett., 44, 3816-3824, doi:10.1002/2017GL072908.   DOI
6 Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179-8205, doi:10.1175/JCLI-D-16-0836.1.   DOI
7 Lee, J.-Y., 2018: Interdecadal changes in the boreal summer tropical-extratropical teleconnections occurred around mid-to-late 1990s. Atmosphere, 28, 325-336, doi:10.14191/Atmos.2018.28.3.325 (in Korean with English abstract).   DOI
8 Lee, J.-Y., and K.-J. Ha, 2015: Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical-extratropical teleconnection. J. Climate, 23, 8634-8647, doi: 10.1175/JCLI-D-15-0154.1.
9 Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 1189-1203, doi:10.1007/s00382-010-0909-9.   DOI
10 Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493-509, doi:10.1007/s00382-012-1544-4.   DOI
11 Lee, J.-Y., P.-C. Hsu, S. Moon, and K.-J. ha, 2017a: Influence of boreal summer intraseasonal oscillation on Korean precipitation and its long-term changes. Atmosphere, 27, 435-444, doi:10.14191/Atmos.2017.27.4.435 (in Korean with English abstract).   DOI
12 Lee, J.-Y., and Coauthors, 2017b: The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit. Asia-Pac. J. Atmos. Sci., 53, 257-272, doi:10.1007/s13143-017-0032-5.   DOI
13 Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
14 Lim, Y.-H., K.-S. Lee, H.-J. Bae, D. Kim, H. Yoo, S. Park, and Y.-C. Hong, 2019: Estimation of heat-related deaths during heat wave episodes in South Korea(2006-2017). Int. J. Biometeorol., 63, 1621-1629, doi: 10.1007/s00484-019-01774-2.   DOI
15 WMO, 2017: WMO Guidelines on the calculation of climate normal. WMO-No. 1203, 18 pp [Available online at https://library.wmo.int/index.php?lvl=notice_display&id=20130#.XZrg2uczbUJ].
16 Perkins-Kirkpatrick, S. E., and P. B. Gibson, 2017: Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep., 7, 12256, doi:10.1038/s41598-017-12520-2.   DOI
17 Vogel, M. M., J. Zscheischler, R. Wartenburger, D. Dee, and S. I. Seneviratne, 2019: Concurrent 2018 hot extremes across Northern Hemisphere due to humaninduced climate change. Earth's Future, 7, 692-703, doi:10.1029/2019EF001189.   DOI
18 Wheeler, M. C., H.-J. Kim, J.-Y. Lee, and J. C. Gottschalck, 2017: Chapter10: Real-time forecasting of modes of tropical intraseasonal variability: The Madden-Julian and boreal summer intraseasonal oscillation. In C.-P. Chang et al. Eds., The Global Monsoon System, 3rd ed, World Scientific, 131-138.
19 Yeh, S.-W., Y.-J. Won, J.-S. Hong, K.-J. Lee, M. Kwon, K.-H. Seo, and Y.-G. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 1463-1474, doi:10.1175/MWR-D-17-0205.1.   DOI
20 Yeo, S.-R., S.-W. Yeh, and W.-S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophy. Res. Atmos., 124, 7498-7511.   DOI
21 Frolicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360-364, doi:10.1038/s41586-018-0383-9.   DOI
22 Cherchi, A., and A. Navarra, 2013: Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability. Climate Dyn., 41, 81-103, doi:10.1007/s00382-012-1602-y.   DOI
23 Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483-3505.   DOI
24 Ding, Q., and B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 1878-1896, doi:10.1175/2011JCLI3621.1.   DOI
25 Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019-1037.   DOI
26 Imada, Y., H. Shiogama, C. Takahashi, M. Watanabe, M. Mori, Y. Kamae, and M. Shuhei, 2018: Climate change increased the likelihood of the 2016 heat extremes in Asia. Bull. Amer. Meteor. Soc., 99, S97-101, doi:10.1175/BAMS-D-17-0109.1.   DOI
27 IPCC, 2019a: Climate Change and Land. IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 864 pp [Available online at https://ipcc.ch/report/srccl].
28 IPCC, 2019b: Summary for Policymakers. IPCC Special report on the Ocean and Cryosphere in a Changing Climate, 3-35 [Available online at https://www.ipcc.ch/srocc/chapter/summary-for-policymakers].
29 KMA, 2010: 2010 extreme climate report, Korea Meteorological Administration, 114 pp (in Korean) [Available online at http://web.kma.go.kr/images/focus_pcrm/down/report_201012.pdf ].
30 KMA, 2017: 2016 extreme climate report (in Korean), Korea Meteorological Administration, 190 pp. [Available online at http://www.climate.go.kr/home/cc_-data/2017/2016_abnormal_climate_report_high.pdf].
31 Knutson, T. R., J. Kam, F. Zeng, and A. T. Wittenberg, 2018: CMIP5 model-based assessment of anthropogenic influence on record global warmth during 2016. Bull. Amer. Meteor. Soc., 99, S11-15, doi:10.1175/BAMS-D-17-0104.1.   DOI
32 Park, S.-W., S. Park, H.-I. Lee, and S.-W. Lee, 2016: Results of heat-related illnesses surveillance, 2016. Korea Centers for Disease Control and Prevention (in Korean with English abstract) [Available online at https://www.cdc.go.kr/board.es?mid=a20602010000&bid=0034&act=view&list_no=75530].
33 Masson-Delmotte, V., and Coauthors, 2018: Summary for Policymakers. In: Global warming of 1.5$^{\circ}C$ An IPCC Special Report. IPCC, 32 pp [Available online at https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf].