• Title/Summary/Keyword: wave algorithm

Search Result 1,082, Processing Time 0.025 seconds

Adaptive Re-reflecting Wave Control In Plunger Type Wave Maker System: Experiments In Two Dimensional Wave Basin

  • Park, Gun-Il;Kim, Ki-Jung;Park, Jae-Woong;Lee, Jin-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • The control performances for active re-reflecting wave control suggested in the previous paper have been verified in cases of regular and irregular waves in a real two dimensional wave basin. For regular waves, the control performances are investigated in terms of reflection coefficients, expected amplitudes of propagating waves and wave absorbing capabilities after cessation of wave generation, compared with those of no-control cases. For irregular waves similar verification procedures were adopted. Though there are certain constraints due to the geometrical non-linearity of wave maker and certain nonlinear characteristics due to the near field and gravity waves these experiments show that the control logic could be useful in realizing re-reflecting wave control in conditions of real wave basin.

Channel assignment for 802.11p-based multi-radio multi-channel networks considering beacon message dissemination using Nash bargaining solution (802.11p 기반 다중 라디오 다중채널 네트워크 환경에서 안전 메시지 전송을 위한 내쉬 협상 해법을 이용한 채널할당)

  • Kwon, Yong-Ho;Rhee, Byung-Ho
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.63-69
    • /
    • 2014
  • For the safety messages in IEEE 802.11p vehicles network environment(WAVE), strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. WAVE standards apply multiple radios and multiple channels to provide open public road safety services and improve the comfort and efficiency of driving. Although WAVE standards have been proposed multi-channel multi-radio, the standards neither consider the WAVE multi-radio environment nor its effect on the beacon broadcasting. Most of beacon broadcasting is designed to be delivered on only one physical device and one control channel by the WAVE standard. also conflict-free channel assignment of the fewest channels to a given set of radio nodes without causing collision is NP-hard, even with the knowledge of the network topology and all nodes have the same transmission radio. Based on the latest standard IEEE 802.11p and IEEE 1609.4, this paper proposes an interference aware-based channel assignment algorithm with Nash bargaining solution that minimizes interference and increases throughput with wireless mesh network, which is deigned for multi-radio multi-cahnnel structure of WAVE. The proposed algorithm is validated against numerical simulation results and results show that our proposed algorithm is improvements on 8 channels with 3 radios compared to Tabu and random channel allocation algorithm.

An SPC-Based Forward-Backward Algorithm for Arrhythmic Beat Detection and Classification

  • Jiang, Bernard C.;Yang, Wen-Hung;Yang, Chi-Yu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.380-388
    • /
    • 2013
  • Large variation in electrocardiogram (ECG) waveforms continues to present challenges in defining R-wave locations in ECG signals. This research presents a procedure to extract the R-wave locations by forward-backward (FB) algorithm and classify the arrhythmic beat conditions by using RR intervals. The FB algorithm shows forward and backward searching rules from QRS onset and eliminates lower-amplitude signals near the baseline using a statistical process control concept. The proposed algorithm was trained the optimal parameters by using MIT-BIH arrhythmia database (MITDB), and it was verified by actual Holter ECG signals from a local hospital. The signals are classified into normal (N) and three arrhythmia beat types including premature ventricular contraction (PVC), ventricular flutter/fibrillation (VF), and second-degree heart block (BII) beat. This work produces 98.54% accuracy in the detection of R-wave location; 98.68% for N beats; 91.17% for PVC beats; and 87.2% for VF beats in the collected Holter ECG signals, and the results are better than what are reported in literature.

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

Effective Map Building Using a Wave Algorithm in a Multi-Robot System

  • Saitov, Dilshat;Umirov, Ulugbek;Park, Jung-Il;Choi, Jung-Won;Lee, Suk-Gyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.69-74
    • /
    • 2008
  • Robotics and artificial intelligence are components of IT that involve networks, electrical and electronic engineering, and wireless communication. We consider an algorithm for efficient navigation by building a precise map in a multi-robot system under conditions of limited and unlimited communications. The basis of the navigation algorithm described in this paper is a wave algorithm, which is effective in obtaining an accurate map. Each robot in a multi-robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robots can actively seek to verify their relative locations. Using shared maps, they coordinate their exploration strategies to maximize exploration efficiency. To prove the efficiency of the proposed technique, we compared the final results with the results in $Burgard^{8}$ and $Stachniss.^{9-10}$ All of the simulation comparisons, which are shown as graphs, were made in four different environments.

A simplified algorithm for conceptual estimation of the material quantities of rubble-mound breakwaters

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.111-129
    • /
    • 2020
  • A simplified algorithm is proposed for fast estimation of the material quantities required for the construction of rubble-mound breakwaters. The proposed algorithm is able to employ only the data available at feasibility study phase such as the maximum draught of the design ship selected to transport the cargos to the harbor despite, because at the feasibility phase, information for the planned harbor is likely to be very limited. A linear-constant waterdepth model together with a proposed section configuration for the breakwaters, which is customary for harbors, is considered to calculate the quantity of materials. The numerical simulation of the wave characteristics has been verified using the recorded wave data collected by a buoy installed near the Neka harbor in Caspian Sea waters. A case study has been also applied to four harbors to validate the proposed algorithm. The estimated weights using the proposed linear-constant and multi-linear waterdepth models were compared using the bathymetry maps and layouts of these harbors. A computer program, written in QBasic language, has been developed to simulate the wave characteristics and to estimate the material quantities needed to construct a rubble-mound breakwater. The obtained results show that taking into account the acceptable accuracies normally applied to the feasibility study and conceptual design phases, the proposed algorithm is sufficiently accurate and highly effective for the conceptual estimation of materials' quantities of breakwaters in the feasibility study phase of harbor projects.

NUMERICAL SIMULATION OF SHOCK FOCUSING PHENOMENON BY CARTESIAN EMBEDDED BOUNDARY METHOD AND WAVE PROPAGATION ALGORITHM (내장 카티지안 경계법과 파동전파 알고리즘을 사용한 충격파 집속 현상의 수치적 시뮬레이션)

  • Jung, Y.G.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.14-20
    • /
    • 2010
  • Shock-focusing concave reflectors can have parabolic, circular or elliptic cross-sections. They produce effectively a very high pressure at the focusing point. In the past, many optical images have been obtained on shock focusing via experiments. Measurement of field variables is, however, difficult in the experiment. Using the wave propagation algorithm and the Cartesian embedded boundary method, we have successfully obtained numerical Schlieren images that appear very much like the experimental results. In addition, we obtained the detailed field variables such as pressure, velocity, density and vorticity in the unsteady domain. The present numerical results have made it possible to understand the shock focusing phenomenon in more detail than before.

A Study on Labeling Algorithm of ECG Signal using Fuzzy Clustering (퍼지 클러스터링을 이용한 심전도 신호의 구분 알고리즘에 관한 연구)

  • Kong, In-Wook;Kweon, Hyuk-Je;Lee, Jeong-Whan;Lee, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.427-436
    • /
    • 1999
  • This paper describes an ECG signal labeling algorithm based on fuzzy clustering, which is very useful to the automated ECG diagnosis. The existing labeling methods compares the crosscorrelations of each wave form using IF-THEN binary logic, which tends to recognize the same wave forms such as different things when the wave forms have a little morphological variation. To prevent this error, we have proposed as ECG signal labeling algorithm using fuzzy clustering. The center and the membership function of a cluster is calculated by a cluster validity function. The dominant cluster type is determined by RR interval, and the representative beat of each cluster is determined by MF (Membership Function). The problem of IF-THEN binary logic is solved by FCM (Fuzzy C-Means). The MF and the result of FCM can be effectively used in the automated fuzzy inference -ECG diagnosis.

  • PDF

Study about MULTI MODE Measurement Algorithm For Effective Structural Monitoring System (효과적인 구조물 진단 시스템을 위한 MULTI MODE 계측법의 연구)

  • Hong, Yong;Wang, Gao-Ping;Hwang, Seung-Ho;Park, Hyun-Woo;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1382-1385
    • /
    • 2007
  • In this paper, we study about the measuring algorithm that can implement Structural Health Monitoring (SHM) more efficiently by two measurement methods using smart sensor. Through the impedance measurement method, the damage condition of structures on wide area is monitored first, and then it changes the mode to guided wave measurement mode by mode switching algorithm when impedance measurement mode detects abnormal signals. Efficient handling of the real-time data would be available by analyzing location and shape of damage through guided wave measurement.

  • PDF

Tracking characteristics of the complex-LMS algorithm for a sweeping frequency sine-wave signal (주파수가 선형적으로 변하는 조화 입력에 대한 복소 최소자승오차법의 추종 특성)

  • 배상준;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.173-176
    • /
    • 1996
  • The transient behavior of the complex-LMS adaptive filter is studied when the adaptive filter is operating on a fixed or sweeping complex frequency sine-wave signal. The first-order difference equation is derived for the mean weights and its closed form solution is obtained. The transient response is represented as a function of the eigenvectors and eigenvalues of input correlation matrix. The mean-square error of the algorithm is evaluated as well. An optimal convergence parameter and filter length can be determined for sweeping frequency sine-wave signals as a function of frequency change rate and signal and noise powers.

  • PDF