• Title/Summary/Keyword: wave algorithm

Search Result 1,089, Processing Time 0.026 seconds

Calculating of 3-Dimensional Temperature Distribution for High-Temperature Exhaust Gas Using CT-TDLAS (CT-TDLAS를 이용한 고온 배기가스의 3차원 온도분포 측정)

  • YOON, DONGIK;KIM, JOONHO;JEON, MINGYU;CHOI, DOOWON;CHO, GYEONGRAE;DOH, DEOGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • 3-dimensional temperature distribution of the exhaust gas of a fire flame of LPG have been measured by the constructed CT-TDLAS system. 3-Dimensional temperature distributions are measured by 2 layers of CT-TDLAS. Each layer has $8{\times}8$ laser beams implying the temperatures of 64 meshes are measured. SMART algorithm has been adopted for reconstructing the absorption coefficients on the meshes. The line strengths at 6 representative wave lengths of $H_2O$ have been used for obtaining the absorption spectra of the exhaust gas. The temperature distributions measured by the constructed CT-TDLAS have been compared with those by the thermocouples. The relative errors measured between by thermocouple and CT-TDLAS were 13% in average and 33% at maximum. The similarity of temperature distribution between by thermocouples and by CT-TDLAS has been shown at the lower layer than the upper layer implying an unstability of combustions.

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

  • Chang, Min-Hyuk;Oh, Mi-Suk;Lim, Chun-Hwan;Ahmad, Muhammad-Bilal;Park, Jong-An
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.283-288
    • /
    • 2001
  • In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.

  • PDF

A Three-Dimensional Numerical Model of Hydrodynamic Flow on σ-Coordinate (연직변환좌표(鉛直變換座標)에서 3차원(次元) 유동(流動) 수직모형(數値模型))

  • Jung, Tae Sung;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1145-1158
    • /
    • 1994
  • A three-dimensional, finite difference, numerical model with free surface was developed on ${\sigma}$-coordinate. A semi-implicit numerical scheme in time has been adopted for computational efficiency. The scheme is essentially independent of the stringent stability criteria (CFL condition) for explicit schemes of external surface gravity wave. Implicit algorithm was applied for vertical shear stress, Coriolis force and pressure gradient terms. The reliability of the model with vertically variable grid system was checked by the comparison of simulation results with analytic solution of wind-driven currents in a one-dimensional channel. Sensitivity analysis of differencing parameters was carried out by applying the model to the calculation of wind-driven currents in a square lake.

  • PDF

Research of human body information interfacing with Far infrared and application to physical therapy (Far infrared를 이용한 생체정보 인터페이싱에 대한 연구)

  • Park, Rae Joon;Kim, Jae-Yoon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.509-527
    • /
    • 2001
  • The Sun's ray is composed of Infrared(49%), Visible light(40%) and Ultra violet(11%), however the ray getting to the earth is FIR(Far infrared; 60%), IR(Infrared; 20%), and UV(Ultra Violet; 20%). Human beings has utilized FIR already from time immemorial. Hershel found out Infrared for the first time. in the Industrial Revolution the Infrared and FIR had been begun to use making products. In these days, with contemporary science FIR would be begun to clear up the implication in the human body and organic compound. IR classified by wavelength three parts NlR, MIR, FIR. There is FIR which is radiated from healthy human body the wave length is 8-l4m. The human body is composed of proteins which get easily changed by a thermal factor (about 42 $^{\circ}$C over). FIR with low temperature can deeply penetrate on the human body composed things without troublesomes, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). When FlR penetrated on the human body. it would inhibit the abnormal genes and cells expression, and then information of DNA and RNA would be reexpressed for arranging DNA and RNA abnormal state. As FlR's receptors in the body, it could be presumed that N-glycosyl linkage of purine and deoxyribose, RNA splicing process, and Heat shock protein. To take the FIR which was a optimized wavewlength and strength, at first, we induced the characteristic algorithm and the computerized programing. Then we formed that the formular of optimized FIR with physical, mathematical logic and theory. especially, Plank, Kirchhoff, Wien, Stefan-Boltzmann's logic and law. In the long run, the formular was induced with integration mathematical, since we had to know the molecular wavelength. Based on the induced formular as above, we programmed the optimized FlR radiating computerized program. In this research, we designed the eletronic circuit f3r interfacing with human body to diagnosis and treatment with FIR sensor which radiated FIR wavelength optimized.

  • PDF

Design of a CP Spiral RFID Reader Antenna in UHF Band (UHF 대역 CP 스파이럴 RFID 리더 안테나 설계)

  • Lee, Chu-Yong;Choo, Ho-Sung;Park, Ik-Mo;Han, Wone-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.562-571
    • /
    • 2008
  • In this paper, we propose a novel structure of a spiral antenna with a CP characteristic for RFID reader in UHF band. Since the proposed antenna can be built by printing on a FR-4 substrate, it is appropriate for low-cost mass-production. The antenna is designed to operate in UHF band of $860{\sim}960$ MHz. The CP bandwidth is Increased enough to cover an overall UHF RFID band by using a spiral structure for the antenna arm. The matching bandwidth is broadened by using a quarter-wave transformer between the fred and the antenna body. The proposed antenna has advantages of its easy gain and pattern control with a small antenna size. The measured antenna performance shows the matching bandwidth of 13%, the CP bandwidth of 23%, and the gain of 6.5 dBi. This verifies that the proposed antenna is appropriate for RFID antennas in UHF band.

Spectroscopic Imaging at 1.0Tesla MR Unit (1.0Tesla 자기공명 영상장치에서의 분광영상기법에 관한 연구)

  • Yi, Y.;Ryu, T.H.;Oh, C.H.;Ahn, C.B.;Lee, H.K.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.517-527
    • /
    • 1997
  • Magnetic Resonance Spectroscopic Imaging is a methodology combining the imaging and spectroscopy. It can provide the spectrum of each areas of image so that one can easily compare the spectrum of one position to another position of the image. In this study, we developed pulse sequence or the spectroscopic imaging method, RF wave forms or the saturation of water signal, computer simulations to validate our method, and confirmed the methodology with phantom experiment. Then we applied the spectroscopic method to human subject and identified a few important metabolites in in vivo. To develope a water saturating RF waveform, we used Shinnar-Le-Roux algorithm and obtained maximum phase RF waveform. With this RF pulse, it could suppress the water signal to 1:1000. The magnet is shimmed to under 1.0ppm with auto-shimming technique. The saturation bandwidth is 80Hz(2ppm). The water and fat seperation is 3.3ppm(about 140Hz at 1 Tesla magnet), the bandwidth is enough to resolve the difference. But we are more concerned about the narrow window in between the two peaks, in which the small quantity of metabolites reside. We performed the computer simulation and phantom experiments in 8*8 matrix form and showed good agreement in the image and spectrum. Finally we applied spectroscopic imaging to the brain of human subject. Only the lipid signal was shown in the periphery region which agrees with the at distribution in human head surface area. The spectrum inside the brain shows the important metabolites such as NAA, Cr/PCr, Choline. We here have shown the spectroscopic imaging which is normally done above 1.5 Tesla machine can be performed in the 1 Tesla Magnetic Resonance Imaging Unit.

  • PDF

Reconstruction of Myocardial Current Distribution Using Magnetocardiogram and its Clinical Use (심자도를 이용한 심근 전류분포 복원과 임상적 응용)

  • 권혁찬;정용석;이용호;김진목;김기웅;김기영;박기락;배장호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.459-464
    • /
    • 2003
  • The source current distribution in a heart was reconstructed from the magnetocardiogram (MCG) and its clinical usefulness was demonstrated. MCG was measured using 40-channel superconducting quantum interference device (SQUID) gradiometers for a patient of Wolff-Parkinson-White (WPW) syndrome, which has an accessory pathway between the atria and the ventricles. Reconstruction of source current distribution in a plane below the chest surface was performed using minimum norm estimation (MNE) algorithm and truncated singular value decomposition (SVD), In the simulation, we confirmed that the current distributions. which were computed for the test dipoles, represented well the essential feature of the test current configurations, In the current map of WPW syndrome, we observed abnormal currents that would bypass the atrioventricular junction at a delta wave. However, we could not observe such currents any more after the surgery. These results showed that the obtained current distribution using MCG signals is consistent with the electrical activity in a heart and has clinical usefulness.

Compensation of RF Impairment and Performance Improvement of Digital on Channel Repeater in the T-DMB (T-DMB 동일 채널 중계기의 RF 불균형 보상 및 성능 개선)

  • Kim, Gi-Young;Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.453-461
    • /
    • 2011
  • In order to use more efficiently limited frequency resources at the broadcasting band and to eliminate blanket area of the terrestrial broadcasting and to improve broadcasting quality. The importance of repeaters has increasing continuously. However, in case of T-DMB digital on channel repeater in OFDM systems, some of the signal radiated feedback again at the receiver antenna. So it generates feedback signal interference in repeater system. Also phase noise increases ICI(Inter Carrier Interference). It affects seriously the frequency domain equalizer. In this paper, we remove the feedback signal interference by LMS with correlation. Also we propose an effective equalizer algorithm that can remove ICI caused by phase noise and the power amplifier's back-off. In this simulation results, this system is satisfied the performance of BER=$10^{-4}$ at less than SNR=14 dB after compensation of phase noise.

Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method (직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석)

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.