DOI QR코드

DOI QR Code

Calculating of 3-Dimensional Temperature Distribution for High-Temperature Exhaust Gas Using CT-TDLAS

CT-TDLAS를 이용한 고온 배기가스의 3차원 온도분포 측정

  • YOON, DONGIK (Division of Refrigeration & Air-conditioning Eng., Graduate School of Korea Maritime & Ocean University) ;
  • KIM, JOONHO (Division of Convergence Study on the Ocean Science and Technology, Graduate School of Korea Maritime & Ocean University) ;
  • JEON, MINGYU (Division of Advanced Technology and Science, Graduate School of Tokushima University) ;
  • CHOI, DOOWON (Division of Mechanical Eng., Korea Maritime & Ocean University) ;
  • CHO, GYEONGRAE (Division of Mechanical Eng., Korea Maritime & Ocean University) ;
  • DOH, DEOGHEE (Division of Mechanical Eng., Korea Maritime & Ocean University)
  • 윤동익 (한국해양대학교 대학원 냉동공조공학과) ;
  • 김준호 (한국해양대 대학원 해양과학기술융합학과) ;
  • 전민규 (도쿠시마 대학교 첨단과학기술대학원) ;
  • 최두원 (한국해양대학교 기계공학부) ;
  • 조경래 (한국해양대학교 기계공학부) ;
  • 도덕희 (한국해양대학교 기계공학부)
  • Received : 2018.01.26
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

3-dimensional temperature distribution of the exhaust gas of a fire flame of LPG have been measured by the constructed CT-TDLAS system. 3-Dimensional temperature distributions are measured by 2 layers of CT-TDLAS. Each layer has $8{\times}8$ laser beams implying the temperatures of 64 meshes are measured. SMART algorithm has been adopted for reconstructing the absorption coefficients on the meshes. The line strengths at 6 representative wave lengths of $H_2O$ have been used for obtaining the absorption spectra of the exhaust gas. The temperature distributions measured by the constructed CT-TDLAS have been compared with those by the thermocouples. The relative errors measured between by thermocouple and CT-TDLAS were 13% in average and 33% at maximum. The similarity of temperature distribution between by thermocouples and by CT-TDLAS has been shown at the lower layer than the upper layer implying an unstability of combustions.

Keywords

References

  1. T. Kamimoto, Y. Deguchi, and Y. Kiyota, "High temperature field application of two dimensional temperature measurement technology using CT tunable diode laser absorption spectroscopy", Flow Measurement and Instrumentation, Vol. 46, 2015, pp. 51-57. https://doi.org/10.1016/j.flowmeasinst.2015.09.006
  2. Y. Deguchi, "Industrial applications of Laser Diagnostics", CRS Press: Taylor & Francis, 2011.
  3. D. W. Choi, G. R. Cho, Y. Deguchi, T. S. Baek, and D. H. Doh, "Study on Optimal Coefficients of Line Broadening Function for Performance Enhancements of CT-TDLAS", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 6, 2016, pp. 773-782. https://doi.org/10.7316/KHNES.2016.27.6.773
  4. P. Sun, Z. Zhang, Z. Li, Q. Guo, and F. Dong, "Study of two dimensional tomography reconstruction of temperature and gas concentration in combustion field using TDLAS" Applied Sciences, Vol. 7, 2017, p. 990. https://doi.org/10.3390/app7100990
  5. D. F. Swinehart, "Beer-Lamber Law", Journal of Chemical Education, Vol. 39, 1962, p. 333. https://doi.org/10.1021/ed039p333
  6. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, "The HITRAN 2008 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transfer, Vol. 110, No. 9-10, 2009, pp. 533-572. https://doi.org/10.1016/j.jqsrt.2009.02.013
  7. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, "Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser", Meas. Sci. Technol. Vol. 14, 2003, pp. 1459-1468. https://doi.org/10.1088/0957-0233/14/8/335
  8. M. G. Jeon, Y. Deguchi, T. Kamimoto, D. H. Doh, and G. R. Cho, "Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy)", Applied Thermal Engineering, Vol. 115, 2017, pp. 1148-1160. https://doi.org/10.1016/j.applthermaleng.2016.12.060
  9. D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, and D. H. Doh, "Performance Improvements in Temperature Reconstructions of 2-D Tunable Diode Laser Absorption Spectroscopy (TDLAS)", Journal of Thermal Science, Vol. 25, 2016, pp. 84-89. https://doi.org/10.1007/s11630-016-0837-z