• Title/Summary/Keyword: wave

Search Result 20,789, Processing Time 0.108 seconds

Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes (다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산)

  • 홍기용;에스똘히오메자
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

An Experimental Study on Wave Focusing Efficiency in the Generation of Directional Extreme Waves (파랑집중에 의한 다방향 극한파 생성의 효율성에 관한 실험적 연구)

  • 홍기용;류슈쉐;양찬규
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2002
  • Extreme waves are generated in a model basin based on directional wave focusing. The targeted wave field is described by double summation method and it is applied to serpent-type wavemaker system. The extreme crest amplitude at a designed location is obtained by syncronizing the phases and focusing the directions of wave components. Two distinguished spectrums of constant wave amplitude and constant wave steepness are adapted to describe the frequency distribution of component waves. The surface profile of generated wave packets is measured by wave guage array and the effects of dominant spectral parameters governing extreme wave characteristics are investigated. It is found that frequency bandwidth, center frequency, shape of frequency spectrum and directional range play a significant role in the wave focusing. In particular, the directional effect significantly enhances the wave focusing efficiency.

Joint inversion of Love Wave and Rayleigh Wave for Evaluating the Subsurface Stiffness Structure (지반 강성구조 평가를 위한 러브파와 레일리파의 동시역산해석)

  • Joh, Sung-Ho;Lee, Il-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.302-307
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. The fact that Love wave is not contaminated by P-wave which makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than the information of Rayleigh wave. Based on theoretical research, the joint inversion analysis which is used both Love wave dispersion information and Rayleigh wave dispersion information was proposed. Purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results utilizing that frequency contribution of each wave is different. This analysis technique is consisted of the forward modeling using transfer matrix, the sensitivity matrix determined to the ground system and DLSS(Damped Least Square Solution) as a inversion technique. The application of this analysis was examined through the field test.

  • PDF

Research on Wave Kinematics & Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 대한 연구)

  • LEE BYEONG-SEONG;JO HYO-JAE;GOO JA-SAM;KANG BYUNG-YOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • When the wind blows hard, most waves are breaking in sea. Breaking waves occur, exceeding limitation of wave steepness(wave height/wave length=l/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at two dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies. We research how are the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force. We compare the force in a regular wave which has same specifications(wave height, period and length) as the breaking wave. Also the experimental results of wave exciting force and particle velocity are investigated by comparison on the analytic results using the potential theory.

  • PDF

On the Statistical Characteristics of the New Year Wave (New Year Wave의 통계적 특성에 대하여)

  • Kim, Do Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2013
  • In this paper time series wave data, which were measured at the Draupner platform in the North Sea on 1995, are used to investigate statistical characteristics of nonlinear wave. Various statistical properties based on time and frequency domain are examined. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The skewness of wave profile is 0.393 and the kurtosis is 4.037 when the freak wave is occurred. The nonlinearity of D1520 data is higher than two adjacent wave data. AI index of the New Year Wave is 2.11 and the wave height is 25.6m. The zero crossing wave period of the New Year Wave is 12.5s which is compared to the average zero up-crossing period 11.3s. The significant steepness of wave data is 0.077 when the freak wave was occurred. H1/3/${\eta}_s$ does not increases as the kurtosis increases and the values is close to 4. The New Year Wave belongs to highly nonlinear wave data packet but the AI index is within linear focusing range.

Inner harbour wave agitation using boussinesq wave model

  • Panigrahi, Jitendra K.;Padhy, C.P.;Murty, A.S.N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.70-86
    • /
    • 2015
  • Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity to harbour site is established using Wave Model (WAM) hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW). A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW). Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.

Estimation of Wave Power in Korean Coastal Waters (파랑에너지 해석 및 가용량 평가 연구)

  • 김현주;최학선;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

Performance Analysis of Floating Wave Energy Converter by Using CFD (CFD를 이용한 부양식 파력발전 장치의 성능해석)

  • CHOI, Yong-Seok;LIM, Tae-Woo;KIM, You-Taek
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1303-1309
    • /
    • 2015
  • The behavior and flow characteristics of the floating wave energy converter were analyzed by using CFD in this study. The average significant wave height was confirmed as 0.5~2.0m from the Korean coastal sea area. This study was carried out by selecting a range of 1.0~1.6m in the wave height to simulate the operations of realistic wave energy converter system. The principle of a piston wave maker was applied in order to produce periodic wave. The behavior of the wave energy converter and the state of the wave overtopping according to the generated periodic wave were confirmed through the unsteady three-dimensional flow analysis. It was found that the wave overtopping rate according to the generated periodic wave was in range of the 11.6~30.0 kg/s.

Wave Modeling for Low-cost Wave Monitoring System (저가형 해파 모니터링 시스템을 위한 파형 모델링)

  • Lee, Jung-Hyun;Lee, Dong-Wook;Heo, Moon-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.383-388
    • /
    • 2014
  • This paper describes a wave modeling method using low-cost sensors. Wave modeling is applied to the wave monitoring system for accurate measurement of ocean wave parameters. The observation of ocean wave parameters is necessary to improve the accuracy of forecast of ocean wave condition. However, the ocean wave parameters measured by a low-cost wave monitoring system suffer from several errors. Therefore we introduce a wave modeling method to compensate the ocean wave parameters corrupted by errors. The proposed method is analyzed using experiments within controlled environment. It is verified that the accuracy of low-cost wave monitoring system can be increased by the proposed method.

Frequency domain analysis of Froude-Krylov and diffraction forces on TLP

  • Malayjerdi, Ebrahim;Tabeshpour, Mohammad Reza
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.233-244
    • /
    • 2016
  • Tension Leg Platform (TLP) is a floating structure that consists of four columns with large diameter. The diffraction theory is used to calculate the wave force of floating structures with large dimensions (TLP). In this study, the diffraction and Froude-Krylov wave forces of TLP for surge, sway and heave motions and wave force moment for roll, pitch degrees of freedom in different wave periods and three wave approach angles have been investigated. From the numerical results, it can be concluded that the wave force for different wave approach angle is different. There are some humps and hollows in the curve of wave forces and moment in different wave periods (different wavelengths). When wave incidents with angle 0 degree, the moment of diffraction force for pitch in high wave periods (low frequencies) is dominant. The diffraction force for heave in low wave periods (high wave frequencies) is dominant. The phase difference between Froude-Krylov and diffraction forces is important to obtain total wave force.