• Title/Summary/Keyword: watershed model

Search Result 1,604, Processing Time 0.022 seconds

Development of Hydrologic Simulation Model to Predict Flood Runoff in a Small Mountaineous Watershed (산지 소유역의 홍수유출 예측을 위한 모의발생 수문모형의 개발)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.58-68
    • /
    • 1988
  • Most of the Korean watersheds are mountaineous and consist of various soil types and land uses And seldom watersheds are found to have long term hydrologic records. The SNUA, a hydrologic watershed model was developed to meet the unique characteristics of Korean watershed and simulate the storm hydrographs from a small mountaineous watershed. Also the applicability of the model was tested by comparing the simulated storm hydrographs and the observed from Dochuk watershed, Gwangjugun, Kyunggido The conclusions obtained in this study could be summarized as follows ; 1. The model includes the simulation of interception, evaporation and infiltration for land surface hydrologic cycle on the single storm basis and the flow routing features for both overland and channel systems. 2. Net rainfall is estimated from the continuous computation of water balance at the surface of interception storage accounting for the rainfall intensities and the evaporation losses at each time step. 3. Excess rainfall is calculated by the abstraction of infiltration loss estimated by the Green and Ainpt Model from the net rainfall. 4. A momentum equation in the form of kinematic wave representation is solved by the finite differential method to obtain the runoff rate at the exit of the watershed. 5. The developed SNUA Model is a type of distributed and event model that considers the spatial distribution of the watershed parameters and simulates the hydrograph on a single storm basis. 6. The results of verification test show that the simulated peak flows agree with the observed in the occurence time but have relative enors in the range of 5.4-40.6% in various flow rates and also show that the simulated total runoff have 6.9-32% of relative errors against the observed. 7. To improve the applicability of the model, it was thought that more studies like the application test to the other watersheds of various types or the addition of the other hydrologk components describing subsurface storages are needed.

  • PDF

Flood Runoff Analysis Using an Object -Oriented Runoff Model (객체지향기법을 이용한 홍수유출해석)

  • 김상민;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.51-56
    • /
    • 1999
  • An object-orient watershed runoff model was formulated using the SCS curve number method and routing routines. The four objects included in the model were rainfall , hydrologic unit, reservoir, and channel. Each object considers the data and simulation method to depict the runoff processes. the details of which were presented and discusses in the paper. The resulting model was applied to the HS #3 watershed of the Balan Watershed Project, which is 412.5 ha in size and relatively steep in landscape. The simulated runoff hydrographs from the model were close to the observed data.

  • PDF

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed(I) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(I) -격자 물수지 모형의 개발 및 적용-)

  • 김대식;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.23-33
    • /
    • 1995
  • Geographic data which are difficult to handle by the characteristics of spatial variation and variety turned into a possibility to analyze with tlie computer-aided digital map and the use of Geographic Information System(GIS). The purpose of this study is to develop and apply a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. This paper discribes the modeling procedure and the applicability of the cell water balance model (CELWAB) which calculates the water balance of a cell and simulates surface runoff of watershed simultaneously by the interaction of cells. The cell water balance model was developed to simulate the temporal and spatial storage depth and surface runoff of a watershed. The CELWAB model was constituted by Inflow-Outflow Calculator (JOC) which was developed to connect cell-to-cell transport mechanism automatically in this study. The CELWAB model requests detail data for each component of a cell hydrologic process. In this study, therefore, BANWOL watershed which have available field data was selected, and sensitivity for several model parameters was analyzed. The simulated results of surface runoff agreed well with the observed data for the rising phase of hydrograph except the recession phase. Each mean of relative errors for peak discharge and peak time was 0.21% and2.1 1% respectively. In sensitivity analysis of CELWAB , antecedent soil moisture condition(AMC) affected most largely the model.

  • PDF

A Study on the Water Quality Prediction in Rural Watershed Using SWAT-WASP Model (SWAT-WASP 모형을 이용한 농촌유역의 수질예측에 관한 연구)

  • 권명준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.708-714
    • /
    • 1999
  • For the assessment of the level of stream pollution, SWAT-WASP model linked with GIS was applied to a respresentative rural watershed and evaluated for its applicability through calibration and verfication using observed data. Using daily water yields, sediment yields and nutrient discharge simulated by SWAT model, WASP input file was build. Point source pollutant and water quality change in stream was considered in WASP model. For the model applicatiion , digital maps were constructed for watershed boundary, ladn-use , soil series , digital elevation, and topographic data of Bok-Ha watershed using GRASS. The model application results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model.

  • PDF

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

Simulation of Moving Storm in a Watershed Using A Distributed Model(II)-Model Application- (분포형 모델을 이용한 유역내 이동강우의 유출해석(II)-모델의 적용-)

  • Choe, Gye-Un;Lee, Hui-Seung;An, Sang-Jin
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.81-91
    • /
    • 1993
  • In this paper, a moving storm in the real watershed was simulated using a distributed model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm of August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity of the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetative cover percentages, overland plane slopes, channel bed slopes and so on, are spatially varied. The model developed in the previous paper was utilized as a distributed model for simulating the moving storm. In the model, runoff in a watershed was simulated as two parts which are overland flow and channel flow parts. The good agreement was obtained between a simulated hydrograph using a distributed model and an observed hydrograph. Also, the conservations of mass are well indicated between upstream and downstream at channel junctions.

  • PDF

Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT (BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정)

  • Jang, Jae-Ho;Yoon, Chung-Gyeong;Jung, Kwang-Wook;Son, Yeung-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

Estimation of Runoff Curve Number for Ungaged Watershed using SWAT Model (SWAT을 이용한 미계측 유역의 유출곡선지수 산정)

  • Lee, Jin-Won;Kim, Nam-Won;Lee, Jeong-Woo;Seo, Byung-Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.11-16
    • /
    • 2009
  • This study is to suggest the SWAT model as inputs for the estimation of CN (Curve number) if we do not have hourly rainfall and runoff data in the ungaged watershed. The daily CNs were estimated by using SWAT model for Chungju dam watershed and the CNs by hourly rainfall and runoff data in the same period with daily CN estimation were also estimated. Then the daily and hourly CNs were compared each other. The CNs by SWAT model were larger than the actual CNs. 7.4% larger in AMC-I, 1.2% in AMC-II, and 6.3% in AMC-III respectively. If we consider various uncertainties in the estimation of CN, the error of 6.8% could be acceptable for the application in the field.

Prediction of Daily Streamflow on Agricultural Watersheds (농업유역의 일별 하천유출량 추정)

  • Im, Sang-Jun;Park, Seung-U
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.274-282
    • /
    • 2006
  • The objective of this study was to develop a hydrologic simulation model to predict daily streamflow from a small agricultural watershed considering irrigation return flow. The proposed IREFLOW(Irrigation REturn FLOW) model consists of hillslope runoff model, irrigation scheme drainage model, and irrigation return flow model, and simulates daily streamflow from an irrigated watershed. Two small watersheds were selected for monitoring of hydrological components and evaluating the model application. The relative error (RE) between observed and simulated daily streamflow were 2.9% and 6.4%, respectively, on two small agricultural watersheds (Baran and Gicheon) for the calibration period. The values of RE in daliy streamflow for the validation period were 6.0% for the Baran watershed, and 2.8% for the Gicheon watershed.

  • PDF

Integrated Watershed Modeling Under Uncertainty (불확실성을 고려한 통합유역모델링)

  • Ham, Jong-Hwa;Yoon, Chun-Gyoung;Loucks, Daniel P.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.