• Title/Summary/Keyword: water-splitting reaction

Search Result 86, Processing Time 0.019 seconds

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution (HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향)

  • Han, Sangjin;Kim, Hyosub;Ahn, Byungtae;Kim, Youngho;Park, Chusik;Bae, Kikwang;Lee, Jonggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Manufacture of melting temperature controllable modified sulfur (MS) and its application to MS concrete (융점 제어형 개질유황의 개발 및 이를 활용한 콘크리트의 특성 연구)

  • Kim, Jin-Hee;Choi, Jin Sub;Park, No Hyung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.261-267
    • /
    • 2014
  • In this study, we manufactured melting temperature controllable modified surfur (MS) and studied the properties of sulfur modified cement concrete (SMC). We investigated the effects of sulfur and pyridine content on melting temperature of MS. The reaction is confirmed by measuring Raman spectrophotoscopy. The SMC was produced at Water (W)/Cement (C) = 45 wt%, Sand (S)/Aggregate (A) = 45 wt% and 5, 10, 15 and 20 % of MS on the basis of conventional portland cement, respectively. And then physical properties such as compressive strength, splitting tensile strength and permeability of SMC were measured. As MS added, permeability was decreased, while strength and spalling properties were improved. To confirm the safety of MS and SMC, pyrolyzed gas chromatography (P-GC) and gas hazard test were conducted. The results showed that MS and SMC were relatively safe at an elevated temperature.

Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell (이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구)

  • Kwon, Youngjin;Kim, Dongyeon;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang;Jun-Seok Ha
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.

Synthesis of Co3O4 Nanocubes as an Efficient Electrocatalysts for the Oxygen Evolution Reacitons (물 분해 과정에서 효율적인 촉매 특성을 보이는 Co3O4 nanocubes 합성)

  • Choi, Hyung Wook;Jeong, Dong In;Wu, Shengyuan;Kumar, Mohit;Kang, Bong Kyun;Yang, Woo Seok;Yoon, Dae Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • The high efficient water splitting system should involve the reduction of high overpotential value, which was enhanced by the electrocatalytic reaction efficiency of catalysts, during the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) reaction, respectively. Among them, transition metal-based compounds (oxides, sulfides, phosphides, and nitrides) are attracting attention as catalyst materials to replace noble metals that are currently commercially available. Herein, we synthesized optimal monodisperse Co3[Co(CN)6]2 PBAs by FESEM, and confirmed crystallinity by XRD and FT-IR, and thermal behavior of PBAs via TG-DTA. Also, we synthesized monodispersed Co3O4 nanocubes by calcination of Co3[Co(CN)6]2 PBAs, confirmed the crystallinity by XRD, and proceeded OER measurement. Finally, the synthesized Co3O4 nanocubes showed a low overpotential of 312 mV at a current density of 10 mA·cm-2 with a low Tafel plot (96.6 mV·dec-1).

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

Reaction Characteristics of 2-step Methane Reforming over [Cu, Ni] Frrite/$ZrO_2$ ([CU, Ni] ferrite/$ZrO_2$ 상에서 2단계 메탄 개질 반응 특성)

  • Yoo, Byoung-Kwan;Cha, Kwang-Seo;Kim, Hong-Soon;Kang, Kyoung-Soo;Park, Chu-Sik;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.520-528
    • /
    • 2008
  • 2-step methane reforming, consisting of syn-gas production and water splitting step, was carried out over Cu-ferrite/$ZrO_2$. To improve the reactivity over Cu-ferrite/$ZrO_2$ presenting low reactivity in 2-step methane reforming, the addition of Ni was considered. As the results, the added Ni to Cu-ferrite/$ZrO_2$ improved the reactivity in syn-gas production step. However, (Cu, Ni) ferrite/$ZrO_2$ showed carbon deposition in syn-gas production step when an excess Ni was added. Furthermore, (Cu, Ni) ferrite/$ZrO_2$ showed the high durability without the deactivation of the medium during repeated ten cycles, although it showed more deposited carbon than the medium without Ni.

Effect of Ag Addition on ZnO for Photo-electrochemical Hydrogen Production (ZnO를 이용한 광 전기화학적 수소제조 반응 시 Ag 첨가 영향)

  • Kwak, Byeong Sub;Kim, Sung-Il;Kang, Misook
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • In this study, ZnO, which is widely known as a non $TiO_2$ photocatalyst, was synthesized using coprecipitation method and Ag was added in order to improve the catalytic performance. The physicochemical characteristics of the synthesized ZnO and Ag/ZnO particles were checked using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL), and photocurrent measurements. The performance of catalysts was tested by $H_2$ production using the photolysis of $H_2O$ with MeOH. By adding Ag which plays a role as an electron capture on the ZnO catalyst, the performance increased due to the recombination of excited electrons and holes. In particular, $8.60{\mu}mol\;g^{-1}$ $H_2$ was produced after 10 h reaction over the 0.50 mol% Ag/ZnO.