• Title/Summary/Keyword: water-quality

Search Result 11,939, Processing Time 0.04 seconds

Analysis of Relationship Between Water Quality Parameters with Land Use in Yeongsan River Basin (영산강 수계의 토지이용과 수질항목 간의 상관관계 분석)

  • Park, Jinhwan;Moon, Myungjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • The purpose of this study is to provide a base line data to improve the water quality in the Yeongsan River basin. As the major factor that affects the water quality of Yeongsan River is nonpoint pollution source, in order to find a resolve to improve the quality, a study was conducted to identify the correlation between the stream water quality and that of the land use. The study showed that the concentration of the contents in the water from the agricultural land environment was found to be higher as oppose to that found in the content of the water from the forest land. As a result, it can be deducted that agricultural land deteriorates water quality whereas that of the forest land is of much better quality. Therefore, it is highly recommended to take advanced improved care of agricultural land close to a water source to improve the quality of Yeongsan River basin.

Correlations of Irrigation Water Quality to Yield and Quality of Rice Grain (관개용수 수질과 벼 수확량, 미질과의 상관관계 규명)

  • Choi, Sun Hwa;Choi, Ho Jin;Jang, Jeon Ryeol;Lee, Seung Heon;Oh, Jong Min
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.169-175
    • /
    • 2005
  • This study was carried out to investigate the effects of irrigation water pollution on the yield and grain quality of rice. It acquires fundamental data to set up water quality standards for irrigation and produce agricultural safety products. The correlations of BOD, T-N, T-P, pH, ECw of the irrigation water with yield, grain appearance quality, and the protein content were evaluated. The field and pot experiments were conducted by using Japonica of Oryza sativa L. during 2 years. BOD concentration in irrigation water effects strongly on grain appearance quality and yield of rice. T-N in irrigation water has strong effect on the yield, appearance, and quality of rice. T-P concentration in irrigation water have not any correlation with yield and quality of rice. pH showed strongly negative correlation with maturity ratio(MTR), 1000 grain weight(TGW), and yield of rice(YLD) as r=-0.803~-0.828(p<0.001) and have no effect on the appearance quality of rice. $EC_w$ indicating salt content showed strongly negative correlation with MTR, TGW, number of grains per panicles(NGP), and number of panicles per unit area(NPM) as r=-0.759~-0.798, and with YLD as -0.753.

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.

Water Quality Variation and Corrosion Index Characteristics of Underground Reservoir in Apartment (공동주택 지하저수조의 수질변화 및 부식성 특성)

  • JunYoung, Jang;JooWon, Kim;YuHoon, Hwang;KiPal, Kim;HyunSang, Shin;ByungRan, Lim
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.275-281
    • /
    • 2022
  • To maintain water quality after water treatment, monitoring whether the quality of treated tap water quality changes is essential. However, current investigations are insufficient to prevent secondary contamination in drinking water supply systems. This study investigated Gyeonggi's e apartment where a red water problem occurred and monitored the water quality and corrosiveness of the overall water supply system to the apartment from June 2021 to April 2022. In a comparison of drinking water quality after water treatment and the influent of the reservoir, turbidity and heavy metal concentrations were increased and residual chlorine was decreased due to increases in temperature. Correlation analysis and principal component analysis (PCA) indicated that a low level of residual chlorine may cause the abscission of Mn2+ and Fe2+ through microorganism activation, which also causes a high level of turbidity. The corrosion index (LI) in the influent of the reservoir tank was increased due to Ca2+ and temperature. These results indicate that the corrosiveness of drinking water and the deterioration of drinking water quality were mainly increased between the drinking water treatment plant and the reservoir tank's influent. The findings provide clear evidence that it is essential to manage water supply systems and reservoir tanks to prevent the secondary contamination of drinking water.

Development of Analytical Method and Monitoring of Organophosphorus Pesticides in the Raw Water and Clean Water by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS를 이용한 유기인계 농약류의 최적 분석법 정립과 원·정수에서의 모니터링)

  • Kim, Gyung-A;Song, Mi-Jeong;Yeom, Hoon-Sik;Son, Hee-Jong;Lee, Sang-Won;Choi, Jin-Tack
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1569-1582
    • /
    • 2015
  • The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.

A study on the algal growth-related water quality of the Dongbok laka

  • Kim, Jong-Min;Kim, Hyun-Ku;Huh, Yu-Jeong;Jeong, Jong-Bum
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.25-25
    • /
    • 2004
  • We studied algal growth-related water quality of the Dongbok lake which is the drinking water reservoir for the Gwangju municipality. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 13.7 mg/I in the surface layer. Highly turbid surface water with 46.8 mg/I of SS was also caused by Perdinium bloom. Peridinium bloom decisively eliminated cyanobacterial growth in the lake, otherwise cyanobacterial bloom resulted. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated in terms of water quality. This paper deals with some details of water quality changes with algal growth in the Dongbok lake past two years.

  • PDF

Introduction of Corrosion Index System for Stability of Drinking Water Quality (음용수질의 안정성을 위한 부식지수제도의 도입)

  • Kim, Yeong-Kwan;Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.707-717
    • /
    • 2011
  • Replacement of old water distribution pipes for protecting water quality induced by pipe corrosion requires enormous budget. Even after the replacement, however, corrosion can occur again at any times and, therefore, inhibitive measure of the corrosion will be not only economical but needed to diminish the consumers' distrust on tap water quality. In 2008, National Environmental Research Institute did a survey on 8 major drinking water source and proposed to establish the Langelier Saturation Index(LI) as a corrosion index in Drinking Water Quality Criteria. Among the water industries of Korea, K-Water is the only one that set up the level of pH over 7.0 and LI above -1.5 on yearly average basis. However, no systematic regulation including LI to inhibit the corrosive tendency has been established yet. In this paper, LI values out of 31 drinking water treatment plants were analyzed and two-stage control of LI value as a measure of corrosive tendency of water is proposed. Primarily, water treatment facilities may operate the system at a target LI value below -1.5. Following the investigation on the effect caused by adjusting the LI value on water quality and corrosiveness, it will be desirable to improve LI value below -1.0 in the long run. In addition to the LI, supplemental use of Larson's modified ratio (LMR) which incorporates hydraulic detention time will be necessary. Several methods to prove the inhibitive effect of improving the LI value on water quality have been also suggested.

Development of Water Quality Modeling in the United States

  • Ambrose, Robert B;Wool, Tim A;Barnwell, Thomas O.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.200-210
    • /
    • 2009
  • The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.