• Title/Summary/Keyword: water-level change

Search Result 1,296, Processing Time 0.035 seconds

The Effect Analysis for Rain Attenuation of VSAT

  • Tak, Hong-Sung;Wook, Shin-Gang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.4-65
    • /
    • 2001
  • In case of data transmission using the upper 10GHz frequency, rain results in attenuation of radio waves. And the most serious atmospheric effect in a satellite link is the rainfall. The attenuation of rainfall very seriously affects the quality of transmission line. Because the rain increases thermal noise and interference, and decreases the amplitude of the signal. KOWACO manages the VSAT system instead of VHF network for communication of rain and water-level data from 1998. The purpose of this system is to monitor the change of water-level and rain data during a flood duration. VHF system acquires the data by a call per a hour. But the satellite network obtains the data whenever event data occur. Thus the satellite network is more powerful than the VHF system. In study ...

  • PDF

Sea Level Rise Around Jeju Island due to Global Warming and Movement of Groundwater/seawater Interface in the Eastern Part of Jeju Island (지구온난화에 따른 제주도 근해의 해수면 상승과 제주도 동부 지역 지하수의 염수대 변화)

  • Kim, Kyung-Ho;Shin, Ji-Youn;Koh, Eun-Heui;Koh, Gi-Won;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.68-79
    • /
    • 2009
  • Groundwater is the main water resource in Jeju Island because storage of surface water in reservoir is difficult in the island due to the permeable volcanic rocks. Because of this reason, the groundwater is expected to be very vulnerable to seawater intrusion by global warming, which will cause sea level rise. The long term change of mean sea level around the Korean Peninsula including Jeju Island was analyzed for this study. The sea level rise over the past 40 years was estimated to be of $2.16\;{\pm}\;1.71\;mm/yr$ around the Korean Peninsula. However, the rising trend around the eastern part of Jeju Island was more remarkable. In addition, the groundwater/seawater intrusion monitoring network operated by the Jeju Special Self-Governing Province shows that seawater intrusion becomes more prominent during dry 4-5 months in a year when the sea level increases. This implies that the fresh groundwater lens in the eastern part of Jeju Island is influenced by the sea level rise due to global warming in the long term scale.

A Study on the Change of Current in the Vicinity of Mokpo Harbor and Its Impact on Ship Operation due to the Discharge through Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑 및 영암-금호방조제의 방류에 의한 목포항 주변수역의 유동변화 및 선박운용에 미치는 영향에 관한 연구)

  • 정대득;이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.133-146
    • /
    • 1999
  • Mokpo coastal area is connected to the adjacent a long river and two large basins. It is essential for port planning coastal zone management and environmental impact study to analyze the data related to the ship operation and variation of current and water quality due to the development of water area including dredging reclamation and estuary barrage. The Yongsan river estuary weir and Yongam-Kumho basins discharge much of water through water gates for the purpose of flood control and prohibit salt intrusion at the inland fresh water area. To meet this purpose discharge through the gates have been done at the period of maximum water level difference between inner river and sea level. This discharged water may cause the changes of current pattern and other environmental influences in the vicinity and inner area of semi-closed Mokpo harbor. In this study ADI method is applied to the governing equation for the analysis of the changes on current pattern due to discharged water. As the results of this study it is known that the discharging operation causes many changes including the increase of current velocity at the front water area at piers approaching passage and anchorages. Discussion made on the point of problems such as restricted maneuverability and the safety of morred vessels at pier and anchorage. To minimize this influence the linked gate operation discharging warning system and laternative mooring system are recommended.

  • PDF

Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors

  • Altabey, Wael A.;Noori, Mohammad
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.499-513
    • /
    • 2018
  • One of the major problems in glass fiber reinforced epoxy (GFRE) composite pipes is the durability under water absorption. This condition is generally recognized to cause degradations in strength and mechanical properties. Therefore, there is a need for an intelligent system for detecting the absorption rate and computing the mass of water absorption (M%) as a function of absorption time (t). The present work represents a new non-destructive evaluation (NDE) technique for detecting the water absorption rate by evaluating the dielectric properties of glass fiber and epoxy resin composite pipes subjected to internal hydrostatic pressure at room temperature. The variation in the dielectric signatures is employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such defects. ECS consists of twelve electrodes mounted on the outer surface of the pipe. Radius-electrode ratio is defined as the ratio of inner and outer radius of pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes on the basis of water absorption rate in the pipe material as a function of absorption time. The arrangements for positioning12-electrode sensor parameters such as capacitance, capacitance change and change rate of capacitance are analyzed by ANSYS and MATLAB to plot the mass of water absorption curve against absorption time (t). An analytical model based on a Fickian diffusion model is conducted to predict the saturation level of water absorption ($M_S$) from the obtained mass of water absorption curve. The FE results are in excellent agreement with the analytical results and experimental results available in the literature, thus, validating the accuracy and reliability of the proposed expert system.

A Study on the Effect to Reduce the Greenhouse Gas with a Pump Scheduling System in Water Supply Plant : Energy Efficiency Improvement CDM Project in Paldang Pumping Station(III) (펌프 스케쥴링 시스템을 적용한 수도사업장의 온실가스 저감효과 분석 : 팔당3 취수장 에너지효율향상 CDM 사업을 중심으로)

  • Kim, Min Su;Lee, Hyung Muk;Park, Min Su;Gwon, Gi Beom
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • The purpose of this study is to analyze the green-house gas emission reduction of the pump scheduling system applied to the water-supply facilities in all objectivity with AMS-II.C/Version 13 in CDM methodology. To calculate the baseline and project emission in Paldang Pumping Station (III) the data about water flow, water level, electricity consumption, etc. before and after the implementation of project was used. This study considers internal facility (mostly for lighting) electricity consumption and grid loss in order to get more accurate emission reductions. The methodology used in this study will be able to apply to different energy improvement techniques to calculate emission reductions in water supply facilities.

Potential Effect of Increased Water Temperature on Fish Habitats in Han River Watershed (수온 증가가 한강 수계의 어류 서식지에 미치는 영향)

  • Chung, Namil;Park, Baekyung;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.314-321
    • /
    • 2011
  • The potential effects of increased water temperature on fish assemblages and their habitats were studied in the streams of the Han River watershed when the water temperature was supposed to increase by $1^{\circ}C$, $2^{\circ}C$, and $3^{\circ}C$ in each sampling site. The percent changes in suitable habitats for each species and in species number within a site were determined, based on the estimated maximum thermal tolerances of 51 fish species whose habitats were classified into four reaches: upstream, up-/midstream, midstream, and mid-/downstream. The maximum thermal tolerance ranged between $25.0^{\circ}C$ and $31.0^{\circ}C$ and significantly increased as the habitat reaches move from upstream to mid-/downstream. With the increases in water temperature, the average suitable habitats for all 51 species were decreased by 31% ($+1^{\circ}C$), 46% ($+2^{\circ}C$), and 60% ($+3^{\circ}C$). The increased water temperature, however, did not induce significant differences in the changes in suitable habitats among four reaches within each level of temperature increase. The relative frequencies of the sampling sites classified into six levels according to the percent change in the number of species in each site were significantly different among three levels of water temperature increase, with relatively greater changes in the sites where 0~20% and 61~100% of species were affected.

A study of statistical analysis method of monitoring data for freshwater lake water quality management (담수호 수질관리를 위한 측정자료의 통계적 분석방법 연구)

  • Chegal, Sundong;Kim, Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • As using public monitoring data, analysing a trends of water quality change, establishing a criteria to determine abnormal status and constructing a regression model that can predict Chlorophyll-a, an indicator of eutrophication, was studied. Accordingly, the three freshwater lakes were selected, approximately 20 years of water quality monitoring data were analyzed for periodic changes in water quality each year using regression analysis, and a method for determining abnormalities was presented by the standard deviation at confidence level 95%. By calculating the temporal change rate of Chlorophyll-a from irregular observed data, analyzing correlations between the rate and other water quality items, and constructing regression models, a method to predict changes in Chlorophyll-a was presented. The results of this study are expected to contribute to freshwater lake water quality management as an approximate water quality prediction method using the statistical model.

Earthquake impacts on hydrology: a case study from the Canterbury, New Zealand earthquakes of 2010 and 2011

  • Davie, Tim;Smith, Jeff;Scott, David;Ezzy, Tim;Cox, Simon;Rutter, Helen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.8-9
    • /
    • 2011
  • On 4 September 2010 an earthquake of magnitude 7.1 on the Richter scale occurred on the Canterbury Plains in the South Island of New Zealand. The Canterbury Plains are an area of extensive groundwater and spring fed surface water systems. Since the September earthquake there have been several thousand aftershocks (Fig. 1), the largest being a 6.3 magnitude quake which occurred close to the centre of Christchurch on 22February 2011. This second quake caused extensive damage to the city of Christchurch including the deaths of 189 people. Both of these quakes had marked hydrological impacts. Water is a vital natural resource for Canterburywith groundwater being extracted for potable supply and both ground and surface water being used extensively for agricultural and horticultural irrigation.The groundwater is of very high quality so that the city of Christchurch (population approx. 400,000) supplies untreated artesian water to the majority of households and businesses. Both earthquakes caused immediate hydrological effects, the most dramatic of which was the liquefaction of sediments and the release of shallow groundwater containing a fine grey silt-sand material. The liquefaction that occurred fitted within the empirical relationship between distance from epicentre and magnitude of quake described by Montgomery et al. (2003). . It appears that liquefaction resulted in development of discontinuities in confining layers. In some cases these appear to have been maintained by artesian pressure and continuing flow, and the springs are continuing to flow even now. In spring-fed streams there was an increase in flow that lasted for several days and in some cases flows remained high for several months afterwards although this could be linked to a very wet winter prior to the September earthquake. Analysis of the slope of baseflow recession for a spring-fed stream before and after the September earthquake shows no change, indicating no substantial change in the aquifer structure that feeds this stream.A complicating factor for consideration of river flows was that in some places the liquefaction of shallow sediments led to lateral spreading of river banks. The lateral spread lessened the channel cross section so water levels rose although the flow might not have risen accordingly. Groundwater level peaks moved both up and down, depending on the location of wells. Groundwater level changes for the two earthquakes were strongly related to the proximity to the epicentre. The February 2011 earthquake resulted in significantly larger groundwater level changes in eastern Christchurch than occurred in September 2010. In a well of similar distance from both epicentres the two events resulted in a similar sized increase in water level but the slightly slower rate of increase and the markedly slower recession recorded in the February event suggests that the well may have been partially blocked by sediment flowing into the well at depth. The effects of the February earthquake were more localised and in the area to the west of Christchurch it was the earlier earthquake that had greater impact. Many of the recorded responses have been compromised, or complicated, by damage or clogging and further inspections will need to be carried out to allow a more definitive interpretation. Nevertheless, it is reasonable to provisionally conclude that there is no clear evidence of significant change in aquifer pressures or properties. The different response of groundwater to earthquakes across the Canterbury Plains is the subject of a new research project about to start that uses the information to improve groundwater characterisation for the region. Montgomery D.R., Greenberg H.M., Smith D.T. (2003) Stream flow response to the Nisqually earthquake. Earth & Planetary Science Letters 209 19-28.

  • PDF

Multi regression analysis of water quality characteristics in lowland paddy fields

  • Kato, Tasuku
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.36-36
    • /
    • 2012
  • Drainage water in lowland paddy fields is quantitatively influenced recycle and/or repeated irrigation by irrigation facilities, i.e. pumps, check gates, small reservoirs and so on. In those drainage channels, nutrients accumulation and increasing organic matters are considered to be occurred, and water quality would be degraded not only environmental aspect but irrigation purpose. In general, Total Nitrogen (T-N) is interested water quality index in irrigation water, because high nitrogen concentration sometimes caused decreasing rice production by excess growth and fallen or degrading quality of taste, then, farmers would like to clear water less than 1mg/L of T-N concentration. In drainage channel, it is known that the nitrogen concentration change is influenced by physical, chemical and biological properties, i.e, stream or river bed condition, water temperature, other water quality index, and plant cover condition. In this study, discharge data (velocity and level) in a drainage channel was monitored by an Acoustic Doppler system and water quality was sampled at same time in 2011. So those data was analyzed by multi regression model to realize hydrological and environmental factors to influence with nitrogen concentration. The results showed the difference tendency between irrigation and non-irrigation period, and those influenced factors would be considered in water quality model developing in future.

  • PDF

Reduction of bacterial regrowth in treated water by minimizing water stagnation in the filtrate line of a gravity-driven membrane system

  • Yi, JongChan;Lee, Jonghun;Jung, Hyejin;Park, Pyung-Kyu;Noh, Soo Hong
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • This study monitored changes in the level of heterotrophic bacteria in the filtrate and investigated the effect of stagnant water on it, using a batch-operated, gravity-driven membrane system for household water treatment. The filtration test was carried out in the presence and absence of stagnant water in the filtrate line. The results showed that stagnant water accelerated the heterotrophic bacteria levels, measured by heterotrophic plate count, even though the heterotrophic plate count of the filtrate finally increased up to $10^5CFU/mL$ regardless of the presence of stagnant water. When the change in heterotrophic plate count of a batch was monitored over filtration time, heterotrophic plate count of the filtrate rapidly decreased within 5 min for each batch filtration. Biofilm formation on the filtrate line was observed in the presence of stagnant water. The biofilm fully covered the filtrate line and contained numerous microorganisms. During storage after filtration, heterotrophic plate count increased exponentially. To improve the filtrate quality of a filtration-based household water treatment system, therefore, the stagnant water in the filtrate line should be minimized, the filtrate produced at the first 5 min is recommended not to be used as potable water, and the storage of filtrate should be avoided.