• Title/Summary/Keyword: water-cooled slag

Search Result 25, Processing Time 0.021 seconds

Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag (고로 서냉슬래그 혼합 시멘트 페이스트의 유동성)

  • Lee, Seung-Heun;Park, Seol-Woo;Yoo, Dong-Woo;Kim, Dong-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.584-590
    • /
    • 2014
  • Air-cooled slag showed grindability approximately twice as good as that of water-cooled slag. While the studied water-cooled slag was composed of glass as constituent mineral, the air-cooled slag was mainly composed of melilite. It is assumed that the sulfur in air-cooled slag is mainly in the form of CaS, which is oxidized into $CaS_2O_3$ when in contact with air. $CaS_2O_3$, then, is released mainly as $S_2O{_3}^{2-}$ion when in contact with water. However, the sulfur in water-cooled slag functioned as a constituent of the glass structure, so the$S_2O{_3}^{2-}$ ion was not released even when in contact with water. When no chemical admixture was added, the blended cement of air-cooled slag showed higher fluidity and retention effect than those of the blended cement of the water-cooled slag. It seems that these discrepancies are caused by the initial hydration inhibition effect of cement by the $S_2O{_3}^{2-}$ ion of air-cooled slag. When a superplasticizer is added, the air-cooled slag used more superplasticizer than did the blast furnace slag for the same flow because the air-cooled slag had higher specific surface area due to the presence of micro-pores. Meanwhile, the blended cement of the air-cooled slag showed a greater fluidity retention effect than that of the blended cement of the water-cooled slag. This may be a combined effect of the increased use of superplasticizer and the presence of released $S_2O{_3}^{2-}$ ion; however, further, more detailed studies will need to be conducted.

The Experimental study on the property of concrete which used Blast furnace slag aggregate (고로슬래그 골재를 사용한 콘크리트 특성에 대한 실험적 연구)

  • 박정우;김상미;김광기;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.489-494
    • /
    • 2001
  • Several studies have reported that Granulated Blast-Furnace Slag improved the properties of concrete. The Granulated Blast-Furnace Slag could be a good alternative in the shortage of aggregate situation. Slag shows the possibility of influential aggregate and effect of environment preservation. This study presents that the basic properties of fresh concrete using Air-cooled Blast-furnace slag aggregate and Water-cooled Blast-furnace slag aggregate. Testing Factors of this study are concrete slump, slump loss, bleeding, and air contents. The result of this study is below. 1) In case of proportion slag and grave is 50 to 50, the biggest slump value is measured. 2) In the concrete using of air-cooled Blast-furnace slag aggregate, the bleeding capacity is a little. In the concrete using of Water-cooled Blast-furnace slag aggregate, the bleeding capacity goes up to 50% increase. 3) As substitution rate of the granulated blast-furnace slag goes up, air content is increased.

  • PDF

A Study on the Quality of the Water Coold Blast Furnace Slag Fine Aggregate (고로수쇄 슬래그 잔골재의 품질에 대한 고찰)

  • 문한영;최연왕;김기형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.24-28
    • /
    • 1990
  • The purpose of this study is to examine through the experimental study whether the water cooled unprocessed blast furnace slag produced in the country is useful for the fine aggregate of concrete or not. The results of this study show that the quality of the water cooled blast furnace slag is inferior to that of natural river sand and that the concrete made by substituting the water cooled blast furnace slag for fine aggregate have a tendency to decrease to some extent in strength. But if the water cooled blast furnace slag is transformed into more hardened state material, to use it as the fine aggregate of concrete will be possible.

  • PDF

A Study on Mortar Strength as Slag Sand Characteristics (슬래그 모래특성에 따른 모르터의 강도에 관한 연구)

  • 박정우;백민수;김성식;임남기;정재동;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.383-388
    • /
    • 2000
  • In these days, there are out of natural sands in the construction field. It is required that development of substitute material for natural material. The blast-furnace slag could be a good alternative material in this situation. It can help resource recycling and the protection of environment. This study presents that the strength properties of mortar using air-cooled blast-furnace slag sand and water-cooled blast-furnace slag sand. The mixing design of this study have a few factors, three type of unit water, four types of W/C, five types of substitution rate. When air-cooled furnace slag sand used in mortar, as substitution rate is higher, 3, 7-days compression strength and flexural strength are going up. But, in case of water-cooled furnace slag sand mortar, strengths are going down.

  • PDF

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M.;Abd el Gawaad, H.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.45-60
    • /
    • 2015
  • This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

Physical Properties of Polymer Concrete Composite Using Rapid-Cooled Steel Slag (I) (Use of Rapid-Cooled Steel Slag in Replacement of Fine Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(I) (잔골재를 급냉 제강슬래그로 대체 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.210-216
    • /
    • 2012
  • For the recycling of rapid-cooled steel slag, various specimens were prepared with the various replacement ratios of the rapid-cooled steel slag and the addition ratios of polymer binders. The physical properties of these specimens were then investigated by absorption test, compressive strength test, flexural strength test and hot water resistance test, and the pore and the micro-structure analysis was performed using scanning electron microscope. Results showed that the flexural strength increased with the increase of rapid-cooled steel slag and polymer binder, but the compressive strength showed a maximum strength at a certain proportion. By the hot water resistance test, compressive strength and flexural strength decreased remarkably and the total pore volume increased but the pore diameter decreased. SEM observation of the structure before the hot water resistance test revealed a very compact infusion of structure but the decomposition or thermal degradation appeared in polymer binders when observed after the hot water resistance test.

Radiation Shielding Property of Concrete Using the Rapidly Cooled Steel Slag from Oxidizing Process in the Converter Furnace as Fine Aggregate

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.478-489
    • /
    • 2012
  • Each year, about four million tons of steel slag, a by-product produced during the manufacture of steel by refining pig iron in the converter furnace, is generated. It is difficult to recycle this steel slag as aggregate for concrete because the reaction with water and free-CaO in steel slag results in a volume expansion that leads to cracking. However, the steel slag used in this study is atomized using an air-jet method, which rapidly changes the melting substance at high temperature into a solid at a room temperature and prevents free-CaO from being generated in steel slag. This rapidly-cooled steel slag has a spherical shape and is even heavier than natural aggregate, making it suitable for the aggregate of radiation shielding concrete. This study deals with the radiation shielding property of concrete that uses the rapidly-cooled steel slag from the oxidizing process in the converter furnace as fine aggregate. It was shown that the radiation shielding performance of concrete mixed with rapidly-cooled steel slag is even more superior than that of ordinary concrete.

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag (서냉슬래그 미분말을 적용한 콘크리트의 역학적 성능 및 내구성 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.356-363
    • /
    • 2017
  • Blast furnace slag(BFS) is a by-product generated during the manufacture of pig ion, and is divided into water-cooled slag(WS) and air-cooled slag(AS) by the coking method of BFS. In this study, concrete specimens with ternary binders were produced at the various replacement levels of cement by AS. Various mechanical properties of concrete, such as compressive and split tensile strengths, absorption and water permeable pore, were measured. In addition, the chloride ions penetration resistance and carbonation resistance were tested to evaluate the durability of concrete incorporating AS. The experimental data indicated that the use of AS up to a maximum of 10% replacement level enhanced the concrete performance. However, a higher replacement of AS exhibited poor mechanical properties and concrete durability.