• Title/Summary/Keyword: water yield

Search Result 2,913, Processing Time 0.032 seconds

Water Yield Computation and the Evaluation of Urbanization in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.106-106
    • /
    • 2018
  • Ecosystem service valuation is a crucial step for the sustainable management of watershed. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield computation in Bagmati Basin of Nepal. The water availability per population in Bagmati Basin is lowest compared to other basins in Nepal. Also, the rate of urbanization is rapidly growing over a decade. In this regard, the objectives of this study are 1) to compute the total water yield of the basin along with computation on a sub-watershed scale, and 2) Study the impacts of land use change on water yield based on CLUE-S model. For the study, Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute water yield. As well, CLUE-S model is used to study land use change, which is further related to study variation on water yield. The sub-watershed wise outcome of the study is expected to provide the guidelines for the effective and economic management of a watershed on a regional scale.

  • PDF

Correlations of Irrigation Water Quality to Yield and Quality of Rice Grain (관개용수 수질과 벼 수확량, 미질과의 상관관계 규명)

  • Choi, Sun Hwa;Choi, Ho Jin;Jang, Jeon Ryeol;Lee, Seung Heon;Oh, Jong Min
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.169-175
    • /
    • 2005
  • This study was carried out to investigate the effects of irrigation water pollution on the yield and grain quality of rice. It acquires fundamental data to set up water quality standards for irrigation and produce agricultural safety products. The correlations of BOD, T-N, T-P, pH, ECw of the irrigation water with yield, grain appearance quality, and the protein content were evaluated. The field and pot experiments were conducted by using Japonica of Oryza sativa L. during 2 years. BOD concentration in irrigation water effects strongly on grain appearance quality and yield of rice. T-N in irrigation water has strong effect on the yield, appearance, and quality of rice. T-P concentration in irrigation water have not any correlation with yield and quality of rice. pH showed strongly negative correlation with maturity ratio(MTR), 1000 grain weight(TGW), and yield of rice(YLD) as r=-0.803~-0.828(p<0.001) and have no effect on the appearance quality of rice. $EC_w$ indicating salt content showed strongly negative correlation with MTR, TGW, number of grains per panicles(NGP), and number of panicles per unit area(NPM) as r=-0.759~-0.798, and with YLD as -0.753.

Grain Yield and Water Use Efficiency as Affected by Irrigation at Different Growth Stages

  • Kim, Wook-Han;Hong, Byung-Hee;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.330-338
    • /
    • 1999
  • Extensive research has been conducted on effects of drought stress on growth and development of soybean but information is rather restricted on the limited-irrigation system by way of precaution against a long-term drought condition in the future. The experiment for limited-irrigation was conducted in transparent vinyl shelter at Asian Vegetable Research and Development Center (AVRDC), Taiwan in 1997. Two soybean varieties, Hwangkeum and AGS292, improved in Korea and AVRDC, respectively were used for this experiment. The relationships between normalized transpiration rate (NTR) and fraction of transpirable soil water (FTSW) in both varieties were similar that the NTR was unchanged until FTSW dropped to about 0.5 or 0.6. At FTSW less than those values, NTR declined rapidly. Days required to harvest in both varieties were significantly prolonged at IR6 treatment compared to any other treatments. Daily mean transpiration rate was significantly higher at IR5 treatment, as averaged over varieties. Similarly, water use efficiency was also high at 1R5 treatment. In both varieties, seed yield was the greatest at the IR5 treatment, as compared to any other limited-irrigation treatments, due to the increased seed number and high transpirational water use efficiency. The indices of input water and seed yield for the different limited-irrigation treatments against control indicated that Hwangkeum produced 59.6% or 60.7% of seed yield using 36.1% or 44.9% of input water, as compared to control, by irrigation at only R5 or R6 stages, respectively. The AGS292 produced 56.1% of seed yield with 35.4% of input water of control, when irrigated at R5 stage. The results of this study have elucidated that the limited irrigation at R5 stage in soybean can be minimized yield loss with such small quantity of water under the environment of long-term drought stress and the expected shortage of agricultural water in the future.

  • PDF

The relation between weather factors, soil water, and yield of tobacco leaf in non-mulching and mulching cultivations (나지작과 피복재배시 기상요소, 토양수분 및 잎담배 수량과의 관계)

  • 김윤동
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.1
    • /
    • pp.73-78
    • /
    • 1983
  • In order to investigate the relation between weather factors, soil water, and tobacco yield grown by nonnulching and mulehing cultivations, a regression analysis was conducted for data collected from 8 years (1971 to 1978) for a flue-cured variety of Hicks. The soil water was calculated by Smith's method. 1 . Tobacco yield was largely correlated to soil water deficit during draught time for nonmulclung cultivation; $Y=6.146+8.6185\times-0.0925$\times2(R=0.935)^{***})$ 2. Tobacco yield was more largely correlated to soil water in flexible draght time interval than in fixed time interval during maximum growing phase.3. This field test was supposed that the optimal soil water condition was 65%field caps city. In this condition tobacco yield was 197. 1-216.5kg/10a for non-mulching cultivation. But the soil water deficit in draught season was little matter for mulching cultivation. The relation between xield and evaporation during May to June was Y: -1199.55+9.4 353$\times$:O. 0155$\times$2 (R=0.904") Maximum tobacco yield was expected to 223.6-251.4kg/10a for mulching cultivation. 5 . Tobacco required high temperature and light even in drying season (maximum growing phase) for mulching cultivation.tion.

  • PDF

Effect of Delayed Transplanting plus Water Stress on the Growth and Yield of the Rice Plants (한발로 인한 벼의 이앙지연 및 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 권용운;소창호;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.3
    • /
    • pp.79-88
    • /
    • 1986
  • Drought occurs most frequently and severely around transplanting season of the rice plants in Korea. Shortage of water due to drought for the paddy fields often delays transplanting, and less often the rice plants are subjected to water stress after delayed transplanting. The present study aimed at quantification of the rice crop loss due to delayed transplanting, different inten3ity of water stress, and the combined effect of delay in transplanting followed by water stress for better use of limited water for irrigation under drought. The rice variety Chucheong, a japonica, and Nampung, an indica x japonica, were grown, transplanted to 1/200 a plastic pots, and subjected to different timing of transplanting and degree of water stress under a rainfall autosersing, sliding clear plastic roof facility with completely randomized arrangement of 5 replications. The results obtained are summarized as follows: 1.Twelve days or 22 days delay in transplanting without water stress reduced rice yield by 25% and 43% in the japonica variety, and by 15% and 60% in the indica x japonica variety. 2.The 10 days or 20 days water stress developed without irrigation after drainage in the rice plants transplanted at proper time lowered the water potential at the paddy soil 10cm deep to -4 bar, and -12 bar and caused rice yield reduction by 14%, and 45% in the japonica variety and by 8%, and 50% in the indica X japonica variety. 3.The 12 days delay in transplanting and 10 days or 20 days water stress reduced rice yield by 39% and 59% in the japonica variety, and by 38% and 52% in the indica x japonica variety. The 22 days delay in transplanting plus 10 days water stress caused yield reduction by 76%, i.e. meaningless yield, in both varieties. 4.The intermittent irrigation just to wet the soil body for 10 days after 10 days water stress without irrigation increased rece yield by 12 to 16% compared to the rice plants water stessed without irrigation continuously for 20 days in both varieties respectively. 5.The above results suggest strongly 1) to transplant the rice plants at proper .time even with some water stress rather than delay for sufficient water from later rainfall, and 2) to distribute insufficient irrigation water to broader area of transplanted rice with limited irrigation for better use of limited irrigation water. A greater sensitivity of japonica variety to a moderate water stress than the indica X japonica variety during initial rooting and tillering stage was noticed. To cope with frequent drought in rice culture, firstly the lasting time of transplanting without yield reduction should be clarified by region and variety, and secondly a scheme of rational distribution of limited water should be developed by region with better knowledge on the varietal distribution of limited water should be developed by region with better knowledge on the varietal responses to varying intensity of water stress.

  • PDF

An Evaluation Method of Water Supply Reliability for a Dam by Firm Yield Analysis (보장 공급량 분석에 의한 댐의 물 공급 안전도 평가기법 연구)

  • Lee, Sang-Ho;Kang, Tae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.467-478
    • /
    • 2006
  • Water supply reliability for a dam is defined with a concept of probabilistic reliability. An evaluation procedure of the water supply reliability is shown with an analysis of long term firm yield reliability. The water supply reliabilities of Soyanggang Dam and Chungju Dam were evaluated. To evaluate the water supply reliability, forty one sets of monthly runoff series were generated by SAMS-2000. HEC-5 model was applied to the reservoir simulation to compute the firm yield from a monthly data of time series. The water supply reliability of the firm yield from the design runoff data of Soyanggang Dam is evaluated by 80.5 % for a planning period of 50 years. The water supply reliability of the firm yield from the historic runoff after the dam construction is evaluated by 53.7 %. The firm yield from the design runoff is 1.491 billion $m^3$/yr and the firm yield from the historic runoff is 1.585 billion $m^3$/yr. If the target draft Is 1.585 billion $m^3$/yr, additional water of 0.094 billion $m^3$ could be supplied every year with its risk. From the similar procedures, the firm yield from the design runoff of Chungju Dam is evaluated 3.377 billion $m^3$/yr and the firm yield from the historic runoff is 2.960 billion $m^3$/yr. If the target draft is 3.377 billion $m^3$/yr, water supply insufficiency occurs for all the sets of time series generated. It may result from overestimation of the spring runoff used for design. The procedure shown can be a more objective method to evaluate water supply reliability of a dam.

Rice Yield Response to Biochar Application Under Different Water Managements Practices

  • Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.16-19
    • /
    • 2012
  • Increasing rice grain yield is critical for feeding rapid increasing of Asian population. However, global warming effect may be negative for sustainable rice production. Therefore it is essential to develop technologies not only for increasing grain yield but also for reducing global warming effect. Biochar, which is carbonized biomass, has a great potential of carbon sequestration and soil quality improvement, which can contribute grain yield increasing. In this study, rice yield responses to biochar application on the rice cropping system were evaluated with field experiments under different water management practices at the research farm of the University of Missouri-Columbia Delta Research Center, Portageville, MO. Biochar (i.e., $4Mg\;ha^{-1}$) was produced using field scale pyrolyzer and incorporated into the field 4 months prior to planting. Rice was grown under three different water management practices. Result showed that no significant yield difference was found in the biochar application plots compared to rice hull and control plots from the 2 years field study at the very fertile soil. However, rainfed management results in severe reduction of yield. Research concludes that the biochar application does not significantly influence on rice yield increasing especially for very fertile soils.

Variety and Seedling Age Affects Fine Rice Yield

  • Amin, A.K.M. Khusrul;Haque, M. Aminul;Akhtaruzzaman, Md;Chowdhury, Nazmun Nahar
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.134-139
    • /
    • 2007
  • The research was conducted with the aim of determining effects of seedling age on the yield of four fine rice varieties viz., Kalizura, Tulshimala, BRRI (Bang-ladesh Rice Research Institute)-37 and BRRI-38. The seedling of different ages such as 15, 25, 35 and 45 days were transplanted on the same day maintaining $25cm{\times}15cm$ spacing. The experiment was laid out in a randomized complete block design with three replications. The yield and yield contributing characters were influenced by seedling age, variety and their interaction. BRRI-38 gave the highest number of effective tillers $hill^{-1}$, panicle length, total spikelets $panicle^{-1}$, grains $panicle^{-1}$, 1000-grains weight and grain yield. Likewise, yield and yield contributing characters were the highest in 35 days old seedling. On the other hand, the variety (BRRI-38) with the same age as of seedlings 35 days old seedlings was found superior to other interactions, but, in the production of grains $panicle^{-1}$ and 1000-grains weight there was no significant effect in this interaction. From the findings it may be inferred that BRRI-38 with 35 days old seedlings produced the highest grain yield.

Effect of pH in Irrigation Water on the Growth, Yield, and Grain Quality of Rice (관개용수 pH가 벼 생육, 수량, 미질에 미치는 영향(I))

  • Choi, Sun-Hwa;Kim, Ho-Il;An, Yeul;Huh, Yoo-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.551-554
    • /
    • 2003
  • This study was carried out to investigate the effects of the pH of irrigation water on the growth, yield, and grain quality of rice. It acquire fundamental knowledges to set up irrigation water quality standards. The pot experiment was conducted with 5 treatments using irrigation waters with various pH values(control, 4, 6, 8, 10) and replicated four times with randomized block design. The results of this study showed that the uptake of N, P, and K, Ripened grain ratio and yield of rice tended to be reduced at the irrigation water of pH 4 and pH 10. P uptake, Ripened grain ratio and yield of rice at pH 4 water were significantly lower than the control. K uptake at pH 10 water was significantly lower than the control. Plant height, SPAD value and protein content of rice were not affected by the pH of irrigation water.

  • PDF

Yield and Seed Quality as Affected by Water Deficit at Different Reproductive Growth Stages in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee;Kim, Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.321-329
    • /
    • 1999
  • The effect of water deficits on soybean [Glycine max (L.) Merr.] could appear on seed quality through changes of morphological plant characteristics. Two Korean genotypes, Hwangkeum (determinate growth habit) and Muhan (indeterminate growth habit), were used to examine the influences of treatment stage and method of water deficit during reproductive growth period on yield and seed quality of soybean. Water deficit at R5 or R6 stages was as damaging to seed quality as double water-deficit treatments at R2+R5 or R2+R6. However, seed from double water-deficit treatment tended to have lower oxidation-reduction potential compare to the corresponding single water-deficit treatment. In comparison with Muhan, Hwangkeum had significantly greater oxidation-reduction potential value. Seed yield per plant in both genotypes depended greatly on seed yield of branches. However, the proportion of number of branch seed to total seed umber in Hwangkeum was increased as the water deficit was applied during later reproductive stage, whereas, in Muhan the proportion was lower. Water-deficit treatments including the single and double water-deficit treatments and non-stressed treatment were able to be classified into five groups for Hwangkeum and four groups for Muhan based on the influences on yield components, number of pod, number of seed, and single seed weight, using principal component analysis. In both genotypes, R2+R5 water-deficit treatment decreased number of pod and seed, but increased single seed weight. On the contrary, R6 or R2+R6 stress increased the pod and seed number, but decreased single seed weight.

  • PDF