• Title/Summary/Keyword: water use intensity

Search Result 196, Processing Time 0.032 seconds

Two-dimensional Inundation Analysis Using Stochastic Rainfall Variation and Geographic Information System (추계학적 강우변동생성 기법과 GIS를 연계한 2차원 침수해석)

  • Lee, Jin-Young;Cho, Wan-Hee;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2010
  • Recently actual rainfall pattern is decreasing rainy days and increasing in rainfall intensity and the frequency of flood occurrence is also increased. To consider recent situation, Engineers use deterministic methods like a PMP(Probable Maximum Precipitation). If design storm wouldn't occur, increasing of design criteria is extravagant. In addition, the biggest structure cause trouble with residents and environmental problem. And then it is necessary to study considering probability of rainfall parameter in each sub-basin for design of water structure. In this study, stochastic rainfall patterns are generated by using log-ratio method, Johnson system and multivariate Monte Carlo simulation. Using the stochastic rainfall patterns, hydrological analysis, hydraulic analysis and 2nd flooding analysis were performed based on GIS for their applicability. The results of simulations are similar to the actual damage area so the methodology of this study should be used about making a flood risk map or regidental shunting rout map against the region.

A Study on the Foundation Characteristics of Vertical Garden (수직정원의 기반 특성에 관한 연구)

  • Hong, Kwang-Pyo;Hong, Seung-Hoon;Jin, Hey-young;LEE, Hyukjae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.301-306
    • /
    • 2020
  • The vertical garden is an environment where plants have many limitations in their growth. In particular, the upper and lower parts of the foundation are characterized by unbalanced moisture distribution. And although it may vary depending on the installation location of the light, generally the base of the light is not in desperate need for plants to grow due to shade. The purpose of this study was to identify the physical characteristics of the vertical garden based on Felt through experiments, classify the location characteristics of the media, and suggest the method of installing the water quantity water frequency, and lighting according to the location characteristics of the foundation. As a result, it was found to be most appropriate to use a 4mm base for the vertical garden and to have an irrigation of about 10 minutes once every 6 hours. In addition, it was found that in order to create a light condition for sufficient growth of plants, light bulbs should be installed at the upper and lower parts of the foundation. As a result of irrigation and lighting tests, the results of the above-mentioned plants need to be referred to in selecting plants that are introduced to vertical gardens, as the results show that the upper part of the foundation has a lower moisture rate and a stronger light than the lower part, and the lower part has a higher moisture rate and a weaker light than the upper part. In the future, we would like to present more accurate methods of selecting and maintaining plants by conducting plant experiments using the underlying characteristics found in this study.

A Change of Turbidity on Forest Stands by Rainfall Characteristics in Small Watershed (산지소유역에 있어서 강우특성에 따른 임분별 탁도 변화)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.381-386
    • /
    • 2012
  • This study was carried out to clarify the turbidity change on three stands (Castanea crenata, Pinus densiflora and Plantation Land) by rainfall characteristics in small watershed. The change of turbidity showed in order of plantation land, Castanea stand and Pinus stand. The linear equations models between turbidity and rainfall intensity were able to account for 91% in Castanea stand, 80% in Pinus stand and 71% in plantation land. The linear equations models between turbidity and duration of rainfall were able to account for about 0-1% in three stands. The linear equations models between turbidity and preceding dry days were able to account for about 30% in three stands. The linear equations models between turbidity and accumulative rainfall were able to account for about 6-22% in three stands. The results indicates that soil runoff by land use and development of forest area could be applied to the mitigation measures such as afforestation and erosion check dam for erosion control and water quality management in small watershed.

Runoff Characteristics of Non-Point Source Pollutants in Storm Event -Case Study on the Upstream and Downstream of Kokseong River, Korea- (강우시 비점오염물질의 유출특성에 관한 연구 -곡성천 상.하류를 대상으로-)

  • Yang Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.418-434
    • /
    • 2006
  • The study was investigated to runoff characteristics of non-point pollutants according to rainfall in Kokseong river watershed. The result of which is as follows : First of all, major reason which affect the formation of water quality of Kokseong River is judged to be caused by non-point pollution source which flows out from farmland and residential area. Flow of rainfall effluent in the downstream in which direct flow components of urban district and combined sewer overflows of farmland was intervened faster than that in the upstream reacted more promptly. Generation of pollutants by non-point source shows increasing trend in general in accordance with the increase in the intensity of rainfall but it was affected by SS, BOD, COD and T-P in the upstream part whereas BOD, COD and T-N were significantly affected by beginning period of rainfall in the downstream. EMC in the downstream increased approximately 3-315 times as compared to upstream, particularly the discharge of SS5 and T-P were extremely increased. While surface flow out of rainfall effluent in the upstream was only 4.7%, the surface flow in the downstream took up as much as 29%, which was major reason for the increase of EMC. From the above contents, we can see that the change in water quality according to the increase and decrease of effluent at the time of rainfall showed very complex pattern depending on the type of land use, and it is judged that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

Analysis of Impacts of Land Cover Change on Runoff Using HSPF Model (HSPF 모형을 이용한 토지피복변화에 따른 유출 변화 분석)

  • Park, Min-Ji;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.495-504
    • /
    • 2005
  • The objective of this study is to estimate the impacts of land cover change on the runoff behavior using Hydrologic Simulation Program-Fortran (HSPF) model and Landsat images. Land cover maps were prepared using three every ten years from 1980 to 2000 of the upper watershed ($258\;km^2$) of Gyeongan stream. Hydrologic parameters of HSPF were calibrated using observed data (1999 - 2000) and validated using observed data (2001, 2003) at Gyeongan gauge station. The simulation results showed that runoff volume and peak rate increased as $15.0\;km^2$ forest areas decreased and $19.3\;km^2$ urban areas increased for 20 years land use changes. The runoff volume showed a higher rate of increase in wet year (2003, 1709.4 mm) than in dry year (2001, 871.2 mm). The peak runoff increased $13.3\;\%$ in normal year (2000, 1257.3 mm) because the year has the highest rain intensity (241.3 mm/hr) among the test years. The runoff volume of a dry season and a wet season (May - September) in normal year 2000 increased $4.4\;\%$ and decreased $8.1\;\%$, respectively.

Estimation of R factor using hourly rainfall data

  • Risal, Avay;Kum, Donghyuk;Han, Jeongho;Lee, Dongjun;Lim, Kyoungjae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.260-260
    • /
    • 2016
  • Soil erosion is a very serious problem from agricultural as well as environmental point of view. Various computer models have been used to estimate soil erosion and assess erosion control practice. Universal Soil loss equation (USLE) is a popular model which has been used in many countries around the world. Erosivity (USLE R-factor) is one of the USLE input parameters to reflect impacts of rainfall in computing soil loss. Value of R factor depends upon Energy (E) and maximum rainfall intensity of specific period ($I30_{max}$) of that rainfall event and thus can be calculated using higher temporal resolution rainfall data such as 10 minute interval. But 10 minute interval rainfall data may not be available in every part of the world. In that case we can use hourly rainfall data to compute this R factor. Maximum 60 minute rainfall ($I60_{max}$) can be used instead of maximum 30 minute rainfall ($I30_{max}$) as suggested by USLE manual. But the value of Average annual R factor computed using hourly rainfall data needs some correction factor so that it can be used in USLE model. The objective of our study are to derive relation between averages annual R factor values using 10 minute interval and hourly rainfall data and to determine correction coefficient for R factor using hourly Rainfall data.75 weather stations of Korea were selected for our study. Ten minute interval rainfall data for these stations were obtained from Korea Meteorological Administration (KMA) and these data were changed to hourly rainfall data. R factor and $I60_{max}$ obtained from hourly rainfall data were compared with R factor and $I30_{max}$ obtained from 10 minute interval data. Linear relation between Average annual R factor obtained from 10 minute interval rainfall and from hourly data was derived with $R^2=0.69$. Correction coefficient was developed for the R factor calculated using hourly rainfall data.. Similarly, the relation was obtained between event wise $I30_{max}$ and $I60_{max}$ with higher $R^2$ value of 0.91. Thus $I30_{max}$ can be estimated from I60max with higher accuracy and thus the hourly rainfall data can be used to determine R factor more precisely by multiplying Energy of each rainfall event with this corrected $I60_{max}$.

  • PDF

Evaluation of the future agricultural drought severity of South Korea by using reservoir drought index (RDI) and climate change scenarios (저수지 가뭄지수와 기후변화 시나리오를 이용한 우리나라 미래 농업가뭄 평가)

  • Kim, Jin Uk;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.381-395
    • /
    • 2019
  • The purpose of this study is to predict agricultural reservoir storage rate (RSR) in a month. This algorithm was developed by multiple linear regression model (MLRM) which included the past 3 months RSRs data and the future climate change scenarios. In order to improve use of predicted RSR, this study need the severe criteria in terms of drought. So, the predicted RSR was indexed as the 3 months reservoir drought index (RDI3) and then it was disaggregated into drought duration, severity, and intensity. For the future RSR estimation by climate change scenarios, the 6 RCP 8.5 scenarios of HadGEM2-ES, CESM1-BGC, MPI-ESM-MR, INM-CM4, FGOALS-s2, and HadGEM3-RA were used in three future evaluation periods (S1: 2011~2040, S2: 2041~2070, S3: 2071~2099). The future S3 period of HadGEM2-ES scenario which has the biggest increase in precipitation and temperature showed the largest decrease to 60.2% among the 6 scenarios compared to the historical RSR (1976~2005) 77.3%. In contrast, INM-CM4 scenario which has smallest changes in precipitation and temperature in S3 period showed the smallest decrease to 72.8%. For the CESM1-BGC and MPI-ESM-MR, FGOALS-s2, and HadGEM3-RA, the S3 period RSR showed 72.6%, 72.6%, 67.4%, and 64.5% decrease respectively. The future severe drought condition of RDI3 below -0.25 showed the increase trend for the number and severity up to -2.0 during S3 period.

Complaint-based Data Demands for Advancement of Environmental Impact Assessment (환경영향평가 고도화를 위한 평가항목별 민원기반 데이터 수요 도출 연구)

  • Choi, Yu-Young;Cho, Hyo-Jin;Hwang, Jin-Hoo;Kim, Yoon-Ji;Lim, No-Ol;Lee, Ji-Yeon;Lee, Jun-Hee;Sung, Min-Jun;Jeon, Seong-Woo;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.49-65
    • /
    • 2021
  • Although the Environmental Impact Assessment (EIA) is continuously being advanced, the number of environmental disputes regarding it is still on the rise. In order to supplement this, it is necessary to analyze the accumulated complaint cases. In this study, through the analysis of complaint cases, it is possible to identify matters that need to be improved in the existing EIA stages as well as various damages and conflicts that were not previously considered or predicted. In the process, we dervied 'complaint-based data demands' that should be additionally examined to improve the EIA. To this end, a total of 348 news articles were collected by searching with combinations of 'environmental impact assessment' and a keyword for each of the six assessment groups. As a result of analysis of collected data, a total of 54 complaint-based data demands were suggested. Among those were 15 items including 'impact of changes in seawater flow on water quality' in the category of water environment; 13 items including 'area of green buffer zone' in atmospheric environment; 10 items including 'impact of soundproof wall on wind corridor' in living environment; 8 items including 'expected number of users' in socioeconomic environment, 4 items including 'feasibility assessment of development site in terms of environmental and ecological aspects' in natural ecological environment; and 4 items including 'prediction of sediment runoff and damaged areas according to the increase in intensity and frequency of torrential rain' in land environment. In future research, more systematic complaint collection and analysis as well as specific provision methods regarding stages, subjects, and forms of use should be sought to apply the derived data demands in the actual EIA process. It is expected that this study can serve to advance the prediction and assessment of EIA in the future and to minimize environmental impact as well as social conflict in advance.

Validation of a physical activity classification table in Korean adults and elderly using a doubly labeled water method (한국 성인과 노인을 대상으로 이중표식수법을 이용한 신체활동분류표 타당도 평가)

  • Hye-Ji Han ;Ha-Yeon Jun;Jonghoon Park;Kazuko Ishikawa-Takata;Eun-Kyung Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • Purpose: This study evaluated the validity of a physical activity classification table (PACT) based on total energy expenditure (TEE) and physical activity level (PAL) measured using the doubly labeled water (DLW) method in Korean adults and the elderly. Methods: A total of 141 (male 70, female 71) adults and elderly were included. The reference standards TEEDLW, PALDLW were measured over a 14-day period using DLW. A 24-hour physical activity diary was kept for three days (two days during the week and one day on the weekend). PALPACT was calculated by classifying the activity type and intensity using the PACT. PALPACT was multiplied by resting energy expenditure measured by indirect calorimetry to estimate TEEPACT. Results: The mean age of the study participants was 50.5 ± 18.8 years, and the mean body mass index was 23.4 ± 3.3 kg/m2. A comparison of TEEDLW and TEEPACT by sex and age showed no significant differences. The bias, the difference between TEEDLW and TEEPACT, was male 17.3 kcal/day and female -4.5 kcal/day. The percentage of accurate predictions (values within ± 10% of the TEEDLW) of TEEPACT was 58.6% in males and 54.9% in females, with the highest prediction values in the age group 40-64 years (70.9%) in males and over 65 years (73.9%) in females. The spearman correlation coefficient (r) between TEEPACT and TEEDLW was 0.769, indicating a significant positive correlation (p < 0.001). Conclusion: In this study, the use of a new PACT for calculating TEE and PAL was evaluated as valid. A web version of the software program and a smartphone application need to be developed using PACT to make it easier to apply for research purposes.

Experimental and model study on the mixing effect of injection method in UV/H2O2 process

  • Heekyong Oh;Pyonghwa Jang;Jinseok Hyung;Jayong Koo;SungKyu Maeng
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.129-140
    • /
    • 2023
  • The appropriate injection of H2O2 is essential to produce hydroxyl radicals (OH·) by mixing H2O2 quickly and exposing the resulting H2O2 solution to UV irradiation. This study focused on evaluating mixing device of H2O2 as a design factor of UV/H2O2 AOP pilot plant using a surface water. The experimental investigation involved both experimental and model-based analyses to evaluate the mixing effect of different devices available for the H2O2 injection of a tubular hollow pipe, elliptical type of inline mixer, and nozzle-type injection mixer. Computational fluid dynamics analysis was employed to model and simulate the mixing devices. The results showed that the elliptical type of inline mixer showed the highest uniformity of 95%, followed by the nozzle mixer with 83%, and the hollow pipe with only 18%, after passing through each mixing device. These results indicated that the elliptical type of inline mixer was the most effective in mixing H2O2 in a bulk. Regarding the pressure drops between the inlet and outlet of pipe, the elliptical-type inline mixer exhibited the highest pressure drop of 15.8 kPa, which was unfavorable for operation. On the other hand, the nozzle mixer and hollow pipe showed similar pressure drops of 0.4 kPa and 0.3 kPa, respectively. Experimental study showed that the elliptical type of inline and nozzle-type injection mixers worked well for low concentration (less than 5mg/L) of H2O2 injection within 10% of the input value, indicating that both mixers were appropriate for required H2O2 concentration and mixing intensity of UV/ H2O2 AOP process. Additionally, the elliptical-type inline mixer proved to be more stable than the nozzle-type injection mixer when dealing with highly concentrated pollutants entering the UV/H2O2 AOP process. It is recommended to use a suitable mixing device to meet the desired range of H2O2 concentration in AOP process.