• Title/Summary/Keyword: water thermal energy

Search Result 1,292, Processing Time 0.03 seconds

Solar power and desalination plant for copper industry: improvised techniques

  • Sankar, D.;Deepa, N.;Rajagopal, S.;Karthik, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.59-70
    • /
    • 2015
  • In India, continuous production of electricity and sweet/potable water from Solar power and desalination plant plays a major role in the industries. Particularly in Copper industry, Solar power adopts Solar field collector combined with thermal storage system and steam Boiler, Turbine & Generator (BTG) for electricity production and desalination plant adopts Reverse osmosis (RO) for sweet/potable water production which cannot be used for long hours of power generation and consistency of energy supply for industrial processes and power generation cannot be ensured. This paper presents an overview of enhanced technology for Solar power and Desalination plant for Copper industry making it continuous production of electricity and sweet/potable water. The conventional technology can be replaced with this proposed technique in the existing and upcoming industries.

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle (유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석)

  • KIM, KYOUNG HOON;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

Development of the Fresh Water Generator

  • Park, Jun-Seop
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.546-552
    • /
    • 1999
  • In order to obtain the highly effective thermal energy from jacket cooling water of propulsion diesel engines. a development of the Fresh Water Generator (FWG) with a capacity of 30 ton/day was implemented. Newly developed experimental devices and data acquisition system were used to evaluate the performance of the FWG. In this study experiments were performed for various driving pressures by varying the mass flowrate of cooling seawater with or without a heat source instead of jacket cooling water.

  • PDF

Winter Season Performance Characteristics of Raw Water-Source Heat Pump System with a Thermal Storage Tank (원수열원 히트펌프 축열시스템의 동절기 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.202-202
    • /
    • 2011
  • Performance of the raw water-source heat pump system with a thermal storage tank has been analyzed in winter season. The raw water is transferred through the multi-regional water supply system from Han river. Raw water is large temperature difference resource compared with groundwater. Although the raw water temperature drops to $0.6^{\circ}C$ due to the heavy snowfall and the severe cold in late January and early February, 2010, the system has been normally operated without any trouble this winter. The unit COP and system COP considered all pump power consumption were estimated based on the second-by-second data of the all sensors. The monthly averaged unit COP and system COP are 3.37 and 2.76 respectively with $1.4^{\circ}C$ of raw water in January, 3.55 and 2.89 with $1.6^{\circ}C$ raw water in February, 3.82 and 3.15 with $5.4^{\circ}C$ raw water in March. The performance of the system are increased with raw water temperature, and the COPs are higher than the water-to-air heat pump system using relatively high temperature raw water from Daecheong reservoir because the water-to-water system was operated on the full load condition and was stopped when the thermal storage tank was full of the high temperature water.

  • PDF

SECOND ATLAS DOMESTIC STANDARD PROBLEM (DSP-02) FOR A CODE ASSESSMENT

  • Kim, Yeon-Sik;Choi, Ki-Yong;Cho, Seok;Park, Hyun-Sik;Kang, Kyoung-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.871-894
    • /
    • 2013
  • KAERI (Korea Atomic Energy Research Institute) has been operating an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), for transient and accident simulations of advanced pressurized water reactors (PWRs). Using ATLAS, a high-quality integral effect test database has been established for major design basis accidents of the APR1400 plant. A Domestic Standard Problem (DSP) exercise using the ATLAS database was promoted to transfer the database to domestic nuclear industries and contribute to improving a safety analysis methodology for PWRs. This $2^{nd}$ ATLAS DSP (DSP-02) exercise aims at an effective utilization of an integral effect database obtained from ATLAS, the establishment of a cooperation framework among the domestic nuclear industry, a better understanding of the thermal hydraulic phenomena, and an investigation into the possible limitation of the existing best-estimate safety analysis codes. A small break loss of coolant accident with a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to the code calculations. This paper includes major information of the DSP-02 exercise as well as comparison results between the calculations and the experimental data.

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.

Basic Design and Dynamic Simulation of Large Scale Solar Thermal Power Plant (대규모 태양열발전 기본설계 및 동특성 계산)

  • Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Jin-Soo;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2007
  • This paper describes the procedure and calculation results of basic design and transient variation of performance of 1 MWe large scale solar thermal power plant (STPP) by using the commercial software of THERMOFLEX and TRNSYS, respectively. In order to simulate the transient variation of STPP, the results of basic design are necessary. The design standard of the STPP is 1 MWe generation with solar only at high DNI condition and then 0.6 MWe output power for 1 hour using stored energy when the DNI becomes lower unable to operate normally. The results of basic design show the important design data of flow rates, water/steam conditions at each equipments and the estimated efficiency of STPP. In addition, dynamic simulation results of STPP are predicted and plotted for one year and three different days weather data of Daejeon.

Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production (지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구)

  • Kim, Woo-Jin;Kang, Kyoung-Soo;Kim, Chang-Hee;Choi, Won-Chul;Kang, Yong;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.