• Title/Summary/Keyword: water surface slope

Search Result 403, Processing Time 0.041 seconds

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

A Stability Evaluation according to inclination of Upper Natural Slope in Soil Slope (토사사면의 상부자연사면 경사에 따른 안정성 평가)

  • Lee, Jeong-Yeob;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.577-580
    • /
    • 2008
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfall and fluctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis.

  • PDF

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Application of Slope-area Discharge Estimation Method using Continuously Observed Water Level Data in a Gravel Bed River -Case Study of the Dal Cheon River- (자갈하천에서 연속적인 수위 자료를 이용한 경사면적법 유량 산정 -달천 사례연구-)

  • Lee, Chan-Joo;Kim, Ji-Sung;Kim, Chi-Young;Kim, Dong-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.503-515
    • /
    • 2008
  • In this study we calculate discharge by slope-area method using continuously observed water level data and analyse the results. This study is performed in the Dalcheon river reach of 960 m length including riffles and a pool, which is located downstream of the Goesan Dam. Three values of roughness coefficient are applied to discharge calculation, which are established using bed material size analysis. Another roughness coefficient value obtained from the river improvement plan is also used. Calculated discharges by slope-area method are compared with dam discharges. Relative difference from dam discharges appears to be largely affected by roughness values and a value of 0.042 or more seems most suitable for the entire study reach. Smaller roughness value is suitable to the reach which has gentler water surface slope than mean channel slope of the entire study reach, while a larger value to steeper reach. In case roughness value is set considering overall slope of the channel, it is desirable to select the entire calculation reach including both gentler and steeper sub-reaches. Since relative difference becomes nearly constant at over 500 cms, in case that verification of applied roughness is conducted with other directly measured discharge, accuracy of measurement by slope-area method for larger discharge may be improved.

Slope Behavior Analysis Using the Measurement of Underground Displacement and Volumetric Water Content (지중 변위와 체적 함수비 계측을 통한 사면 거동 분석)

  • Kim, Yongseong;Kim, Manil;Bibek, Tamang;Jin, Jihuan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.29-36
    • /
    • 2018
  • Several studies have been conducted on monitoring system and automatic measuring instruments to prevent slope failure in advance in Korea and overseas. However, these studies have quite complex structure. Since most of the measurement systems are installed on the slope surface, the researches are carried on the measurement system that detects sign of slope collapse in advance and alerts are still unsatisfactory. In this study, slope collapse experiments were carried out to understand the slope failure mechanism according to rainfall conditions. The water content and displacement behavior at the early stage of the slope failure were analyzed through the measurement of the ground displacement and water content. The results of this study can be used by local government as a basic data for the design of slope failure alarm system to evacuate residents in case of slope failure or landslide due to heavy rainfall.

Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope (불포화 풍화토 사면의 모관흡수력 분포에 대한 지반조건과 강우강도의 영향)

  • Kim, Yong Min;Lee, Kwang Woo;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1017-1025
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate matric suction distribution on a soil slope subjected to rainfall infiltration, which can consider the hydraulic-mechanical characteristics for the analysis. The soil-water characteristic curves (SWCC) are experimentally determined to estimate three types of hydraulic properties of domestic areas. Based on the physical properties, the distribution of matric suction is investigated by considering the major factors, such as soil conditions, rainfall intensities, and slope angles. It is found from the results of this study that the matric suction rapidly decreases with an increase in rainfall intensity, regardless a slope angle. The slope surface is more easily saturated when its saturated hydraulic conductivity is smaller than rainfall intensity, and for the case of multi-layered soil slope, hydraulic characteristics of slope surface has a significant influence on matric suction distribution.

Design Method for Stability in Cut-Slope under heavy rainfall (집중호우를 고려한 절토사면의 안정성 확보를 위한 설계방안)

  • 이풍희;김종흔;전경수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.16-26
    • /
    • 2002
  • As the slope designs had simply followed some slope guidelines during 1960's∼1970's, of which the main purpose was to estimate earth work quantities in the feasibility stage, slope failures had been experienced in Korea Highways. Various site investigation methods for highway cut-slopes have been continuously developed, and major cut-slope failures caused by slope instability have rapidly reduced. The failure mode of recent cut-slope failures in highways during typhoon RUSA No.15. featured a debris flow in soil mass activated by flowing water. The study of the surface soil scour and the debris flow caused by heavy rainfall must be done to protect the cut-slope failures in the future

  • PDF

A Experimental Study on the Variation of the Pore-water Pressure in the Soil Slope during the Rainfall (강우시 토사사면내의 간극수압변화에 관한 실험적 고찰)

  • Jeung, Eujung;Kim, Hongtaek;Jang, Hyunik;Kim, Kyungsuk;Kang, Inkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2008
  • In this research, model tests have been performed for researching the seepage characteristics in the finite soil slope during the rainfall using a manufactured rainfall simulator. On the basis of the results, it has been analyzed how to change the seepage characteristics due to the duration time of rainfall. We are found that the pore-water pressure was gradually increased as increasing the duration time of rainfall. Specially, at the beginning of rainfall, the pore-water pressure in the middle surface of slope was measured larger than any point. As increasing the duration time of rainfall, the pore-water pressure at the inner part of slope was increased greatly at the collapse due to infiltrating the pore-water within the slope. In the research, it was not easy to get various test results because measuring instruments are high sensitivity and difficult to handle. For the future, the model test results are needed for the various slope angle.

  • PDF

Stability Analysis of the Concave Zone in a Slope Considering Rainfall (강우를 고려한 사면내 요부(凹部)에서의 안정성 해석)

  • Sagong Myung;Lim Kyoung-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.77-86
    • /
    • 2005
  • Since slope sliding and loss of railway triggered by a rainfall produce instability in the operation of trains, a proper method to estimate the slope stability considering rainfall Is required. from the field study, sliding induced by rainfall depends on the engineering properties of soils, three dimensional aspect of the slope, rainfall intensity and geological conditions of the soil layers. In this study, among various types of sliding, slope Instability caused by the surface runoff water at the concave zones in a slope is investigated. The depth of runoff water is calculated by using the Rational method and Manning equation. The occurrence of runoff water is evaluated by a comparison between the calculated infiltration rate and rainfall intensity. Pressure heads which can be calculated from the modified Iverson model are used to calculate the factor of safety along the vertical depth of the slope. The modified Iverson model considers the depth of runoff water, thus the maximum hydraulic gradient along the depth of slope is greater than one.