• Title/Summary/Keyword: water surface discharge

Search Result 635, Processing Time 0.028 seconds

Analysis and Comparison of Stream Discharge Measurements in Jeju Island Using Various Recent Monitoring Techniques (다양한 첨단 유량 계측기기를 활용한 제주도 하천 유출 비교 분석)

  • Yang, Sung-Kee;Kim, Dong-Su;Jung, Woo-Yul;Yu, Kwon-Kyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.783-788
    • /
    • 2011
  • Different from the main land of South Korea, Jeju Island has been in difficulties for measuring discharge. Due to high infiltration rate, most of streams in Jeju Island are usually in the dried state except six streams with the steady base flow, and the unique geological characteristics such as steep slope and short traveling distance of runoff have forced rainfall runoff usually to occur during very short period of time like one or two days. While discharge observations in Jeju Island have been conducted only for 16 sites with fixed electromagnetic surface velocimetry, effective analysis and validation of observed discharge data and operation of the monitoring sites still have been limited due to very few professions to maintain such jobs. This research is sponsored by Ministry of Land, Transport and Maritime Affairs to build water cycle monitoring and management system of Jeju Island. Specifically, the research focuses on optimizing discharge measurement techniques adjusted for Jeju Island, expanding the monitoring sites, and validating the existing discharge data. First of all, we attempted to conduct discharge measurements in streams with steady base flow, by utilizing various recent discharge monitoring techniques, such as ADCP, LSPIV, Magnetic Velocimetry, and Electromagnetic Wave Surface Velocimetry. ADCP has been known to be the most accurate in terms of discharge measurement compared with other techniques, thus that the discharge measurement taken by ADCP could be used as a benchmark data for validation of others. However, there are still concerns of using ADCP in flood seasons; thereby LSPIV would be able to be applied for replacing ADCP in such flooded situation in the stream. In addition, sort of practical approaches such as Magnetic Velocimetry, and Electromagnetic Wave Surface Velocimetry would also be validated, which usually measure velocity in the designated parts of stream and assume the measured velocity to be representative for whole cross-section or profile at any specified location. The result of the comparison and analysis will be used for correcting existing discharge measurement by Electromagnetic Wave Surface Velocimetry and finding the most optimized discharge techniques in the future.

Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan Estuary in the Summer of 201 (2010년 여름 담수방류에 의한 영산강 하구의 염분 및 수온 분포 변화)

  • Park, Hyo-Bong;Kang, Kiryong;Lee, Guan-Hong;Shin, Hyun-Jung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.139-148
    • /
    • 2012
  • The short-term variation of salinity and temperature in a dyked estuarine environment is mainly controlled by the freshwater discharge from the dyke. We examined the distribution of salinity and temperature by the freshwater discharge in the Yeongsan River estuary using the CTD data obtained from 8 stations through three surveys in June (weak discharge) and August (intensive discharge), 2010. During the weak discharge in June, the surface salinity showed 30-32.5 psu and its horizontal gradient was relatively high around Goha-do (0.25~0.32 psu/km). On the other hand, the salinity of the bottom layer was almost constant in the range of 33 psu. Water temperature ranged $19{\sim}21^{\circ}C$ and displayed higher gradient in north-south direction than the gradient of east-west direction. During the intensive freshwater discharge on August 12, the salinity dropped to 9~26 psu. The maximum horizontal gradient of surface salinity reached 3.8 psu/km in the north of Goha-do where the strong salinity front was formed, and the horizontal salinity gradient of bottom layer was 0.28 psu/km. The horizontal gradient of water temperature was $-0.45^{\circ}C/km$ in the surface and $-0.12^{\circ}C/km$ in the bottom with high surface temperature near the dyke and decreasing gradually to the river mouth. After 3 days of the intensive discharge ($3^{rd}$ survey), the surface salinity increased to 22~26 psu. However, there still existed relatively high horizontal gradient around Goha-do. In the mean time, the bottom salinity decreased to 26.5~27.5 psu, but its gradient was not big as much as the surface gradient. According to time series of CTD profile near the dyke, the discharged fresh water jetted down temporarily and then recovered gradually with the recovering speed of 0.4 m/hour for the discharge case of $13{\times}10^6$ ton. Due to the combined effects of freshwater discharge and surface heating during the summer of 2010, the Yeongsan estuary, in general, underwent intensified vertical stratification, which in turn caused the inhibition of vertical mixing, especially inside area of estuary. Based on the spatial distribution of salinity and temperature, the Yeongsan estuary can be divided into three regions: the Goha-do area with strong horizontal gradient of salinity and temperature, inner estuary from Goha-do to the dyke with low salinity, and outer estuary from Goha-do to the coasts with relatively high salinity.

Hydrochemical Characteristics and Changes by Rainfall in the Jungrang River (강우에 의한 중랑천의 수질 특성 변화 연구)

  • Kim, Youn-Tae;Kim, Yu Lee;Woo, Nam-Chil;Hyun, Seung Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.666-671
    • /
    • 2006
  • Effects of a rainfall event (July 28, 2005) on the hydrochemical characteristics of the Jungrang river, the biggest tributary of the Han river, was investigated. Significant spatial variations in the hydrochemical characteristics were observed. At JR2 location, concentrations of T-N and T-P were relatively low indicating occurrence of active oxidation in the stepped drop structure. At JR3 location, concentrations of Na, K, Cl, $NH_4-N$ and EC were elevated suggesting increased discharge from the nearby waste-water treatment plant and tributaries. The rain event diluted major dissolved ion concentrations in the river by 12~52%. The $NO_3-N$ levels were preserved during the rain then increased about twofold after rainfall, suggesting increased discharge of nitrate-contaminated groundwater. Heavy metals including Cd, Co, Cr, Cu and Pb were not detected in all water samples and the leachates from surface sediment samples. Concentrations of Fe, Mn, Al and Zn were below the Korean Drinking Water Guideline. Results of this study suggested that establishment of water-quality monitoring protocols describing temporal and spatial variations in parameters sensitive to rainfall events, relatively steady factors, and contaminant sources is required.

Analysis of Impact on the Circulating Water System due to an Installation of Helical Current Turbine at the Discharge Channel of the Power Plant (헬리컬 조류수차 설치로 인한 발전소 배수로 계통 영향 분석)

  • Kim, Ji-Young;Kang, Keum-Seok;Ryu, Moo-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.67-72
    • /
    • 2010
  • In this study, the impact on the circulating water system has been analyzed due to an installation of helical turbine to develop hydro-kinetic energy at the discharge channel of the power plant. Numerical simulations of velocity and pressure variations have been performed when one set of $3.6\;m\;{\times}\;1.5\;m$ sized helical turbine is installed at the outlet of discharge culvert. In case of mean sea level, change of downstream water surface elevation does not affect upstream elevation of the weir because its propagation is blocked by the seal well weir. However in case of highest high water level, change of downstream elevation affects upstream elevation because flow pattern in discharge culvert becomes the full pipe flow with submerged weir. Although an unstable pressure change occurs in upstream of the weir during the intial 10 minutes after beginning of the discharge, it becomes stable after that time. In addition, a rise of water surface elevation by 0.2 m is observed but it is concluded that it hardly affects the safety of circulating water pump (CWP) although its required power is increased more or less. Therefore, the increase of required power of CWP needs to be considered for evaluation of the helical turbine applicability.

Analysis of the Flow over Broad Crested Side Weir by Using Three-Dimensional Numerical Simulation (3차원 수치모의를 이용한 광정횡월류위어의 흐름특성 해석)

  • Kim, Dae-Geun;Kim, Yong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.277-286
    • /
    • 2007
  • In this study, we analyzed the flow characteristics in the wide-crested side weir of trapezoidal section by using a three dimensional numerical stimulation. From this study, as the Froude number increases in the main channel, the overflow discharge ratio and the discharge coefficient of lateral overflow tend to decrease. And it was also found that the increase of the lateral overflow reduces the channel discharge area in the downstream, and the size of recirculating zone is increasing in the opposite side of side weir. The stream-wise water surface on the side where the side weir is installed falls down rapidly in the weir starting point, gradually ascending, and rapidly rising at the end point. The reason why the water surface rapidly rises at the weir end point is because the weir end point hinders the flow.

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

A Proposal of Baseflow using Discharge Measurement Method in the Streams of Island (도서지역 하천의 기저유출량 산정을 위한 유량측정방법 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.561-569
    • /
    • 2014
  • The water resources system of Jeju-do Island entirely depends on groundwater. This study is making a precision observation of baseflow, surface water, water shortage that might be vulnerable to climate change and drought in future. The field observation of baseflow discharges in Akgeuncheon stream has regularly been made with ADCP and ADC and Flowmate every two weeks for twenty-two (22) months (July 8, 2011 to April 27, 2013). This paper represent the results of calculating discharge of a number of hydraulic structures (broad-crested weirs) with comparing and has been calculated more accurate discharges with suitability of different observation methods. The average discharge has been observed 0.851 $m^3/s$, whereas the average ADC and Flowmate is 0.709 $m^3/s$. Meanwhile, stream discharge has been calculated 0.709 $m^3/s$ through the broad-crested weir equation. The discharge has calculated with the weir equation greatly changed according to even a small change in the water level. However, it showed a similar trend to one of the observed discharge. Although, in past there were generating errors caused by observers' strides, vertical and horizontal flow velocity distribution when the average flow velocity had been measured, non-prismatic flow, turbulent flow and others in ADC. This study comes up with the weir equation is more suitable for the characteristics of Jeju-do could be presented through an observations of baseflow discharge.

Discharge Coefficient of flow through Gate piers (수문을 통한 흐름의 유량계수 분석)

  • 김채수;남선우
    • Water for future
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 1989
  • This study was aimed to determine a discharge coefficient of flow through gate piers. The coefficient was Calbrated with water stage data observed during 1984 to 1987 at the Young San Estuary Dam. The coefficient is the function of the dimensionless parameters combined with the difference between up and down stream water level to down stream water depth ratio and water surface draw down ratio. From the verification with existing methods and actual drainages, drainages predicted by the relationship have the most consistency with the actual drainages, also Matthai's method can be used within the proposed condition originally.

  • PDF

Conjunctive Numerical Model of Surface Runoff and River Flow (지표면-하천 유출의 연계 수치모형)

  • Yu, Dong-Hun;Lee, Jeong-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.91-103
    • /
    • 2001
  • In this studs, hydraulic routing model has been developed to predict the water level and discharge in each river section with considering the full interaction between surface runoff and river flow. It improved the computation of flood runoff by reflecting the shape of hydrograph that was determined by the geological and flood characteristics, and the excessive computation of the peak discharge was eliminated by considering the effect of infiltration. The Inflow from surface runoff to river flow was applied to the equation of continuity by implementing effectively the flow in a number of river section, and resulted in a numerical stability at the rapid variation of rainfall. Measurements were conducted during heavy rain in the watershed area of Yang-Yang Namdae-Chun. The present model was tested to the field, and the computed results were compared to the observed data. Its applicability was confirmed with its verification.

  • PDF

Surface Modification of Polypropylene Fiber by Plasma Discharge (방전처리에 의한 Polypropylene섬유의 표면개질)

  • 허만우;이창재;강인규;한명호;김삼수;임학상
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.27-37
    • /
    • 1999
  • Polypropylene(PP) films were treated with plasma glow discharge to produce peroxy radicals on the surfaces. The peroxy radicals formed on the PP film surfaces were subsequently used for the graft polymerization of acrylic acid and acrylamide in an aqueous solution by heating, respectively. Introduction of acrylic acid and acrylamide on the PP film could be confirmed by the observation of carbonyl and primary amine absorptions based on carboxylic acid and amide, respectively. And introduction of functional group could be confirmed by weight analysis and ESCA. The water contact angle(90$^{\circ}$) of PP film was constant, irrespective of elapsed time, while plasma-treated and functional monomer-grafted PP films were slowly increased with elapsed time, showing the rearrangement of surface polar groups in air condition. The water contact angle$(90^\circ)$ of PP film was decreased by the plasma treatment$(56^\circ)$ and further decreased by the grafting of acrylic acid$(34^\circ)$ and acrylamide$(37^\circ)$, indicating increased hydrophilicity of the modified surfaces. The water contact angle of plasma-treated PP film increased a little as time elapsing. The half-life periods of surface voltage on acrylic acid-(31sec) and acrylamide-grafted PP(42sec) were significantly decreased when compared to those on PP(950sec) and plasma-treated PP film(241sec). In the experiments using acid, basic and disperse dyes, absorbance and $\Delta{E}$ values of functional monomer-grafted PP films were significantly increased than that of oxygen plasma-treated one.

  • PDF