• Title/Summary/Keyword: water supply and demand

Search Result 405, Processing Time 0.025 seconds

An analyze of oversea desalination plant order result (해외 해수담수화플랜트 수주현황 분석 및 연구)

  • Sohn, Jinsik;Yang, Jeongseok;Lee, Sunjae;Jang, Jinkoo;Lim, Jaehan;Kim, Dongha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.337-342
    • /
    • 2008
  • A population growth and industry advances are increasing the demand for water while improving the quality of life. By turning seawater into freshwater it is an alternative for the water shortage problem. The study analyzes the orders and makes suggestions on the outlook of an enterprise that can supply desalination plants both inside and outside the country. It compares the production capacity of enterprises in the desalination industry who deal with the thermal and RO methods. We compare 7 enterprises in the thermal method which includes Doosan Heavy Industries, and the top 10 enterprises in the RO method which includes General Electric Corp. Now that the markets in the Middle East have opened and markets in other regions are gradually growing, demand for water will grow especially in developing countries that are in the process of industrialization. Also, the market share of thermal method desalination has been falling, gradually, because too much energy is spent during the process. On the other hand, the market share of the RO method will rise from 37% in 2005 to 57% in 2015. Recently, the desalination market shows that changing from thermal method to RO method is the trend in the Middle East. Growth and demand in other regions are growing at the same pace as the Middle East. Due to this trend, if the RO system, which is highly effective and uses less energy, were to be continuously developed it would be possible to supply water using sea water and would be a viable alternative water resource.

Accounting for the Water Footprint Impact of Food Waste within Korean Households

  • Adelodun, Bashir;Kim, Sang Hyun;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.119-119
    • /
    • 2020
  • Globally, the demand for food and water resources are increasing rapidly with the growing concerns of meeting the projected population upsurge, specifically by 2050. The global population is projected to hit 9.8 billion in 2050 while the food demand is expected to increase by 77% from the 2007 base year. Moreover, the already scarce water resources, especially in the food-producing regions, expected to be significantly affected as food production already accounts for over 70% of the global water resources. However, the estimated food demand encapsulated the actual demand for both human consumption and animal feed in addition to the exuberant food waste at the consumption stage of the supply chain, notably in the developed countries. Managing the food consumption demand and food waste can have across-the-board benefits on water resources and other associated food production impacts. This study assessed the water-saving potentials through food waste in Korean households using the food waste data obtained from the direct weighing analysis. The household food waste collection and characterization were carried out during the summer (July), fall (September), and winter (December) seasons of 2019. The water footprint related to the food waste within Korean households was based on the water footprint concept, i.e. indirect water use. The results of our estimation showed that an average Korean household wasted 6.15 ± 4.36 kg daily, amounting to 12.53 ± 11.10 m3 of water resources associated with the waste. On the per capita basis, an average of 0.024 ± 0.017 kg/capita/day of food was wasted resulting to 0.049 ± 0.044 m3/capital/day of water resources wasted. The food waste types that accounted for the principal share in the water footprint were beef, soybean, rice and pork with values 30.7, 10.1, 9.6, and 7.5%, respectively. Considering that the production of meat and meat products are water intensive and the agricultural water use in Korea is largely for rice production, addressing the food waste of these two important agricultural products can be a hotspot for water saving potential in the country. This study therefore provides an insight to addressing the water scarcity in the country through reducing household food waste.

  • PDF

A Study on Daily Water Demand Prediction Model (급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究))

  • Koo, Jayoug;Koizwui, Akirau;Inakazu, Toyono
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin (수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화)

  • Chung, Gun-Hui;Ryu, Gwan-Hyeong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.

Researching impact of climate change and economic development on the water supply deficit of Ta Keo reservoir, Lang Sonprovince, Viet Nam

  • Chin, L.V.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.199-199
    • /
    • 2016
  • In recent decades, climate change phenomenon has developed towards critical tendency and increased in both frequency, intensity and time which causes catastrophic damage in both people and property, especially in the field of agriculture and water resources. At the current, some researches in the world and Viet Nam studies on climate change impacts on the water resources sectors. Results of scientists'studies showed that climate change will seriously impact productivity, livelihoods and the environment on a global scale; especially large flood phenomena increasingly developing in intensity, drought more violently occurring in a long time. In recent years, the shortage of water supply for economic activity has started to happen with quite serious degree at the Viet Nam, especially in the northern mountainous provinces of Viet Nam.

  • PDF

Researching impact of climate change and economic development on the water supply deficit of Dong Quan reservoir, Ha Noi Capital, Viet Nam

  • Chin, L.V.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.190-190
    • /
    • 2017
  • In recent decades, climate change phenomenon has developed towards critical tendency and increased in both frequency, intensity and time which causes catastrophic damage in both people and property, especially in the field of agriculture and water resources. At the current, some researches in the world and Viet Nam studies on climate change impacts on the water resources sectors. Results of scientists' studies showed that climate change will seriously impact productivity, livelihoods and the environment on a global scale; especially large flood phenomena increasingly developing in intensity, drought more violently occurring in a long time. In recent years, the shortage of water supply for economic activity has started to happen with quite serious degree at the Viet Nam, especially in the northern provinces of Viet Nam.

  • PDF

Assessment of Additional Water Supply Capacity Using a Reservoir Optimal Operation Model (저수지 최적 운영 모형을 이용한 추가 용수 공급 능력 평가)

  • Kang, Min-Goo;Park, Seung-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.937-946
    • /
    • 2005
  • The objective of the study is to develop a reservoir optimal operation model and to suggest the appropriate amount of additional water supply and optimal operation rule. The model uses multiple objective function and a global search method, SCE-UA method. The objective function is set up to maintain the storage at target level, to satisfy the water demand, and to maximize the hydropower product. To evaluate the model's applicability, the model was applied for allocating the optimal water depending on storage level changes of Seomjin dam. The results comparing optimal operation and historical data showed that hydropower product increased from $-2.29\%$ to $14.51\%$, $-5.94\%$ to $3.98\%$, and $-0.43\%$ to $6.35\%$ with varying target levels in wet, dry, and normal period, respectively. Also, The model was applied for assessing water supply capacity of Seomjin dam to satisfy increasing water demand. The dam was operated by the model on consideration of downstream flow as 0.17, 0.50, 0.70, 1.0, 1.5, and $3.0\;m^3/sec$. The results showed that in case of operating the dam with downstream flow less than $0.70\;m^3/sec$ and with target water level lower than 194.0 m, hydropower product was more than the historical operation data and existing amount of water supply was less influenced.

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

Evaluation of Irrigation Canal Systems by the AHP(Analysis Hierarchy Process) Method (AHP기법에 의한 관개용수로 조직의 평가)

  • 박재흥;김선주;김필식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.96-108
    • /
    • 2003
  • Agricultural water occupies the largest portion of total water use in Korea, and generally researches on the development of agricultural water have been stressed on the demand of agricultural water itself. But it is unavoidable to change a policy from the development of water resources to cope with the increase of water demand to the effective management of existing water resources. Evaluation of the decrepitude of irrigation facilities and their reasonable maintenance are important for the effective supply and use of agricultural water. Therefore it is necessary to develop evaluation technique that diagnoses the current condition of irrigation canals and suggest a countermeasure to improve the found problems. 25 items in 6 classes were selected for the evaluation of irrigation canal systems, and the weighted value between the items was calculated using AHP (Analysis Hierarchy Process) method. The current condition of the irrigation facilities was evaluated from the class evaluation marks, and ranking was decided from the total marks between the projects, and finally the priority of the project for the improvement was given.

Optimal Policy for a Regional Water Distribution System

  • Ryang, Yong-Joon
    • Journal of the military operations research society of Korea
    • /
    • v.11 no.1
    • /
    • pp.87-110
    • /
    • 1985
  • This paper presents optimum policy of water supply distribution of the Osaka Prefecural Waterworks System located in the midwest of Japanese Islands. Owing to the ever increasing demand for water, the Osaka Prefectural Government endeavors to expand potable and industrial water distribution system to satisfy the growing water demand of the constituents under its jurisdiction. In this regard, the paper discusses a problem of establishing an efficient and effective water distribution system. The criteria to be considered are stability of water level at the reservoirs, stability of flow in the network, and the water treatment and distribution cost. These objective functions may be combined to form a multiple objective optimization problem or may be used independently and formulated into single objective optimization problems.

  • PDF