• Title/Summary/Keyword: water spraying

Search Result 271, Processing Time 0.038 seconds

Fates of Cyfluthrin and Trichlorfon in Water and Their Impacts on Aquatic Organisms Following Aerial Application Over the Forest (삼림환경에 항공살포된 Cyfluthrin과 Trichlorfon의 물에서의 동태와 수서생물에 미치는 영향)

  • Lee, Sung-Kyu;Kim, Yong-Hwa;Kim, Tae-Wook;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.17-29
    • /
    • 1989
  • This study was conducted to evaluate the behavior in the water and the impact on aquatic organisms following aerial application of two insecticides in the forest, cyfluthrin and trichlorfon, to control the alder leaf beetle. As active ingredients, 25g of cyfluthrin and 536g of trichlorfon per ha were diluted seperately into 30L of tap water, and applied with a helicopter to the study areas. A model stream study was also conducted in a stream located adjacent to the study area in order to confirm the impact of insecticides on aquatic invertebrates. Cyfluthrin residues in water were $0.62{\mu}g/L$ (1st. application) and $78{\mu}g/L$ (2nd application) immediately after spraying. and decreased, to a non-detectable level after one day, while trichlorfon residue increased to $30.7{\mu}g/L$ one day after spraying and fluctuated for 22th day depending on precipitation after spraying. Cyfluthrin application rapidly increased the number of some drifting aquatic invertebrates during 24-hour period immediately after spraying, but had no effects on the other aquatic organisms such as fish and zooplankton. The largest increase in the number of drifting organisms following application of cyfluthrin was shown by Ephemeroptera, and followed by Trichoptera, Coleoptera, and Diptera. However, trichlorfon little affected the number of drifting aquatic invertebrates and zooplankton population.

  • PDF

An Experimental Study on the Permeability Evaluation of Metal Spray System by Concrete Surface Treatment (콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.34-35
    • /
    • 2015
  • Recently, introduction of Advanced water treatment facilities has been increasing due to serious domestic water pollution. Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

Use of Sprinkler System for Production Forest Management of Pine Mushroom (Tricholoma matsutake) (살수장치(撒水裝置)를 이용(利用)한 송이산 관리(管理)에 관(關)한 연구(硏究))

  • Chung, Sang Bae;Kim, Chul Su
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.21-25
    • /
    • 2005
  • In order to prevent the pine mushrooms, Tricholoma matsutake, from being damaged by the pine needle gall midges, Thecodiplosis japonensis, and thereby, to increase their production and improve their quality, a sprinkler system was installed on the mushroom field. A low-concentration insecticide (deltamethrin 1% EC, x2,000) was sprayed once at insects' most active time every day during the period of insects' adult occurrence and thereafter, the irrigation by ground water spraying was periodically enforced. Such a test was conducted at Yangyang-Gun, Kwangwon-do, Korea for 2 years from 2000 through 2001. The pine needle gall midges generally emerged for about 40 days from late May to early July. 50% emergence of them was about June 6, and peak emergence (more than 80%) was early or mid-June. Gall formation rate was 3.5% on average with this ground insecticide spraying, while 51.3% when not treated. Control effectiveness of this insecticide spraying was 92.3%, which was higher than 82.5% by the conventional injection of insecticide into tree stems. Pine mushrooms emerged for about 35 days from mid-September through earlier October, and around 80% of them did for about 15 days from late September through early October. As a result of the periodic ground water-spraying (30 mm per week) for 2 months (from August to October), the production of mushrooms increased by 74.3% (110% in terms of weight), with their quality improvement. The mushrooms produced from the treated stand by the spraying system were priced 8,670,000 wons per hectare, and thus, the net income deducting the facility and management cost was 4,310,000 wons, about 5% higher than value from the control stand. It was analyzed that this treatment was significantly cost effective when the facilities are used more than 5 years.

Studies on the Change of Biochemical Components during Wintering and Thawing Periods and Cold Hardiness of Mulberry(Morus) (월동 및 해동기 뽕나무의 생화학적 물질의 변동과 내동성과의 관계)

  • Choe, Yeong-Cheol;Ryu, Geun-Seop;An, Yeong-Hui
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • In relations to cold acclimation, experiment was carried out to understand the seasonal changes in reserve substances of the mulberry. The shoot barks and leaves of three mulberry varieties(Kaeryangppong, Shinilppong and Yongcheonppong) were sampled, after that their reserve substances were analyzed. The cold hardiness of mulberry was investigated by DTA(Differential Thermal Analysis) method. To increase cold hardiness, gibberellin(100 ppm), kinetin(100 ppm) and Jambi 8 were sprayed on the mulberry leaves. After spraying, falling of the leaves of Yongcheonppong occured earier than the other varities. After the first frost, all of treatments except gibberellin were entirely fallen. Growth regulator extended the leaves fallen. After spraying, water of the shoot barks was not showed difference in the content among the treatments, but amino acid, carbohydrate and soluble protein increased from September to October. Starch content of the shoot barks and leaves was maximum in October, but thereafter decreased during wintering stage. In Shinilppong, Jambi 8 spray increased cold hardiness by 1-2$^{\circ}C$ more than no spray. It was concluded that the cold hardiness of the mulberry in midwinter is closely related to the reserve substances with spraying Jambi 8 on the mulberry leaves.

  • PDF

An Experimental Study on the Improvement of Structural Performance for Concrete Structure Spraying Composite Polyurea (복합폴리우레아를 도포한 콘크리트 구조물의 구조성능 개선에 관한 실험적 연구)

  • Cho, Dong-Ho;Kim, Jin-Bong;Kim, Tae-Wan;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study investigates the applicability of composite polyurea to contain fiber reinforcement like fiber glass, steel fiber and carbon nanotube. Polyurea as elastomer is an excellent water-proofing material with many mechanical characteristics such as high tensile strength, ductility, high rate of expansion and contraction, and so on. The reinforcing fibers can be utilized for improving the load-carrying capacity of concrete structures. The polyurea plays a role to improve the ductility and toughness. Composite polyurea takes the mechanical advantages of the fibers and the polyurea. The test variables include the type of reinforcing fiber, its spraying thickness, and its weight ratio contained in the composite polyurea. It is observed that the load-carrying capacity, and the ductility and toughness are improved with the increase in the spraying thickness and the weight ratio contained in the composite polyurea. It is expected that the composite polyurea can be widely utilized in enhancing the structural and seismic performance.

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

A preliminary evaluation on mixed probiotics as an antimicrobial spraying agent in growing pig barn

  • Shanmugam, Sureshkumar;Jae Hong, Park;In Ho, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1035-1045
    • /
    • 2022
  • The purpose of this study is to examine whether spraying an anti-microbial agent into the slurry pit will reduce the noxious odor substances from piggery barns. For this, a total of 200 crossbred ([Landrace × Yorkshire] × Duroc) growing pigs with an initial average body weight (BW) of 23.58 ± 1.47 kg were selected and housed in two different rooms, i.e. control (CON) and treatment (TRT). Each room has 100 pigs (60 gilts and 40 borrows). For a period of 42 days, all pigs were fed with corn-soybean meal-based basal diet. Later the noxious odor substances were measured by the following methods. First, fecal samples were randomly collected and stored in sealed and unsealed containers, and sprayed with the non-anti-microbial agent (NAMA) (saline water) and multi-bacterial spraying (MBS) agent (200 :1, mixing ratio-fecal sample : probiotic), Second, the slurry pit of CON and TRT rooms were directly sprayed with NAMA and MBS, respectively. The fecal sample that was stored in sealed and un-sealed containers and sprayed with MBS significantly reduced NH3 and CO2 concentration at the end of day 7. However, at the end of day 42, the fecal sample showed a lower H2S, methyl mercaptans, acetic acid, and CO2 concentration compared to the unsealed container. Moreover, at the end of days 7, 14, 21, 28, 35, and 42 compared to the CON room and TRT room slurry pit emits lower concentrations of NH3, acetic acid, H2S, and methyl mercaptans, and CO2 into the atmosphere. Based on the current findings, we infer that spraying anti-microbial agents on pig dung would be one of the better approaches to suppress the odor emission from the barn in the future.