• Title/Summary/Keyword: water sources

Search Result 2,201, Processing Time 0.027 seconds

A Mathematical Framework for Estimating Non-point Waste Load at Enclosed Beaches (연안 하구역 내의 비점오염부하량 산정을 위한 수학모델의 적용)

  • Ahn, Jong Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.111-115
    • /
    • 2010
  • Beaches in estuaries, bays, and harbors are frequently contaminated with indicators of human pathogens such as fecal indicator bacteria. Tracking down the sources of contamination at these enclosed beaches is complicated by the many point and non-point sources that could potentially degrade water quality along the shore. A mathematical framework was developed to test quantitative relationships between fecal indicator bacteria concentration in ankle depth water at enclosed beaches, the loading rate of fecal indicator bacteria from non-point sources located along the shore, physical characteristics of the beach that affect the transport of fecal indicator bacteria across the beach boundary layer, and a background concentration of fecal indicator bacteria attributable to point sources of fecal pollution that impact water quality over a large region of the embayment. Field measurements of fecal indicator bacteria concentrations and water turbulence at an enclosed beach were generally consistent with predictions and assumptions of the mathematical model, and demonstrated its utility for assessing waste load of non-point sources, such as runoff, bather shedding, bird droppings, and tidal washing of contaminated sediments.

Groundwater Contamination (지하수 오염)

  • Jeon, Hyo-Taek
    • 수도
    • /
    • v.25 no.1 s.88
    • /
    • pp.25-35
    • /
    • 1998
  • Factors controlling water quality, water-quality standards, and normal ranges of concentrations in unpolluted fresh water and the sources of elements were explained in this paper. In particular, the sources of groundwater contamination such as the disposal of domestic waste water, landfills, chemical spills and leaking underground tanks, and agricultural and mining activities were discussed.

  • PDF

Estimating the Relative Contribution of Organic Phosphorus to Organic Matters with Various Sources Flowing into a Reservoir Via Fluorescence Spectroscopy (형광스펙트럼을 이용한 유역 하류 저수지의 유입 유기물 내 유기인 기여도 평가)

  • Mi-Hee Lee;Seungyoon Lee;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • The introduction of a significant amount of phosphorous into aquatic environments can lead to eutrophication, which can in turn result in algal blooms. For the effective management of watersheds and the prevention of water quality problems related to nonpoint organic matter (OM) sources, it is essential to pinpoint the predominant OM sources. Several potential OM sources were sampled from upper agricultural watersheds, such as fallen leaves, riparian reeds, riparian plants, paddy soil, field soil, riparian soil, cow manure, and swine manure. Stream samples were collected during two storm events, and the concentrations of dissolved organic carbon (DOC) and phosphorous (DOP) from these OM sources and stream samples were assessed. DOM indicators using fluorescence spectroscopy, including HIX, FI, BIX, and EEM-PARAFAC, were evaluated in terms of their relevance in discerning DOM sources during storm events. Representative DOM descriptors were chosen based on specific criteria, such as value ranges and pronounced differences between low and high-flow periods. Consequently, the spectral slope ratio (SR) paired with fluorescence index (FI) using end-member mixing analysis (EMMA) proved to be suitable for estimating the contribution of organic carbon (OC). The contribution of each organic phosphorous (OP) in stream samples was determined using the phosphorous-to-carbon (P/C) ratio in conjunction with the OC contribution. Notably, OP derived from swine manure in stream samples was found to make the most dominant contribution, ranging from 61.3% to 94.2% (average 78.1% ± 12.7%). The results of this research offer valuable insights into the selection of suitable indicators to recognize various OM sources and highlight the main sources of OP in forested-agricultural watersheds.

Simultaneous Water and class I Methanol maser Survey of Shocker H2 Emitting regions

  • Lim, Wang-Gi;Lyo, A-Ran;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.118-118
    • /
    • 2011
  • We executed a simultaneous survey of 22 GHz water maser and 44 GHz methanol maser toward 290 shocked $H_2$ emitting regions, which were identified from the galactic plane survey at $H_2$ 2.122 micrometer (UKIRT Widefield Infrared Survey for $H_2$; UWISH2). The primary goal of this observation is to characterize the H2 emission sources whether they are sincerely due to the outflows of young stellar objects or other shocked emission from older/evolved objects. We discovered 15 water maser sources and 15 methanol maser sources which provide the detection rate of around 5 percents. Most of detected sources have IRAS sources, infrared dark clouds, and/or submilimeter sources in the beam size of KVN single dish. In this poster, we will present the detailed results of our survey observation and discuss about the star formation rate in the galactic plane.

  • PDF

Development of Prediction Techniques of Water Pollution Sources for the Management of Total Maximum Daily Load - Population Prediction of Pollution Sources from Human Living - (수질오염총량관리를 위한 오염원 예측기법 개발 - 생활계 오염원 인구 예측 -)

  • Park, Jundae;Park, Juhyun;Lee, Suwoong;Jeong, Donghwan;Rhew, Doughee
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.561-567
    • /
    • 2007
  • It is necessary to predict future water pollution sources in the establishment of Total Maximum Daily Load (TMDL) plan for watershed management. There are some difficulties and limits in estimating the pollution sources accurately since the prediction method is not firmly established. This study reviewed the existing methods of prediction and developed a technique characteristics. The characteristics were obtained by analyzing the change pattern of pollution sources by region and incorporated in the technique. A distinctive feature of the technique is to eliminate the influences of land use change included in the pollution source data of a region. The technique has been applied and tested. The test result showed the improvement on the prediction accuracy. A computer program was also developed for the easy application of the technique.

Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea (수계의 비점오염원 관리 - 대청호를 중심으로)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

Evaluation of significant pollutant sources affecting water quality of the Geum River using principal component analysis (주성분분석(PCA) 방법을 이용한 금강 수질의 주요 오염원 영향 평가)

  • Legesse, Natnael Shiferaw;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.577-588
    • /
    • 2022
  • This study aims to identify the limiting nutrient for algal growth in the Geum River and the significant pollutant sources from the tributaries affecting the water quality and to provide a management alternative for an improvement of water quality. An eight-year of daily data (2013~2020) were collected from the Water Environment Information System (water.nier.go.kr) and Water Resources Management Information System (wamis.go.kr). 14 water quality variables were analyzed at five water quality monitoring stations in the Geum River (WQ1-WQ5). In the Geum River, the water quality variables, especially Chl-a vary greatly in downstream of the river. In the open weir gate operation, TP (total phosphorus) and water temperature greatly influence the growth of algae in downstream of the river. A correlation analysis was used to identify the relationship between variables and investigate the factor affecting algal growth in the Geum River. At the downstream station (WQ5), TP and Temp have shown a strong correlation with Chl-a, indicating they significantly influence the algal bloom. The principal component analysis (PCA) was applied to identify and prioritize the major pollutant sources of the two major tributaries of the river, Gab-cheon and Miho-cheon. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant, urban, and agricultural pollutions pollution are identified as significant pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. PCA seems to be effective in identifying water pollutant sources for the Geum River and its tributaries in detail and thus can be used to develop water quality management strategies.

A Study on Types of Groundwater Use and Proposal for Reasonable Use in Korea (우리나라 지하수 이용 형태 고찰과 합리적 활용 방안에 대한 연구)

  • Kim, Hyoung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.112-127
    • /
    • 2017
  • Groundwater accounts for more than 10% of the total water supply in Korea. However, the contribution of groundwater to public water supply systems has been poorly played role throughout the country except for Jeju Island. Compared with the groundwater uses in foreign countries, the pattern of groundwater use in Korea seems to be very deformed and unreasonable. Currently, the development and use of groundwater in Korea are mostly carried out by the individuals, and public sectors such as central and local governments are not actively involved in such activities. Private groundwater use and management will continue to cause groundwater depletion and pollution problems. It is necessary to actively enhance the role of public authorities in groundwater managements by engaging precise hydrogeological surveys and proper economic evaluation in the development and operation of groundwater sources. Also, in order to solve the problems that public water supply systems overly rely on the surface water sources, it is necessary to take policies that require the water supply companies to secure a variety of water sources.

Optimization of multi-water resources in economical and sustainable way satisfying different water requirements for the water security of an area

  • Gnawali, Kapil;Han, KukHeon;Koo, KangMin;Yum, KyungTaek;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.161-161
    • /
    • 2019
  • Water security issues, stimulated by increasing population and changing climate, are growing and pausing major challenges for water resources managers around the world. Proper utilization, management and distribution of all available water resources is key to sustainable development for achieving water security To alleviate the water shortage, most of the current research on multi-sources combined water supplies depends on an overall generalization of regional water supply systems, which are seldom broken down into the detail required to address specific research objectives. This paper proposes the concept of optimization framework on multi water sources selection. A multi-objective water allocation model with four objective functions is introduced in this paper. Harmony search algorithm is employed to solve the applied model. The objective functions addresses the economic, environmental, and social factors that must be considered for achieving a sustainable water allocation to solve the issue of water security.

  • PDF

Microorganism Contamination from Diffuse Sources and Its Impacts on Water Quality in the Geum River Basin (금강유역 비점원에서 발생하는 미생물 오염 및 수질에 대한 영향)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.504-512
    • /
    • 2006
  • In order to estimate microbial contaminant discharge from diffuse sources, rainfall runoff was monitored at forestry, agriculture and urban watersheds. Total coliform and E. coli were monitored at the study watersheds as they are regulated by the environmental laws. Concentration and EMC (Event Mean Concentration) of coliform of rainfall runoff at the urban watershed were the highest followed by those from agricultural and forestry watersheds. By monitoring coliform concentrations of overlying water and sediment at five monitoring points in the downstream of the Geum River, average concentration from spring to summer was higher than those values from fall to spring. Coliform concentrations in the pore water were higher compared to those of overlying water and closely related with flow rate of the river.