• Title/Summary/Keyword: water soluble polymer

Search Result 266, Processing Time 0.029 seconds

Synthesis and Properties of Poly[2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium bromide] and Poly [2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium tetraphenylborate]

  • Gal, Yeong-Soon;Jin, Sung-Ho;Lee, Won-Chul;Kim, Sang-Youl
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.407-412
    • /
    • 2004
  • A new hydroxyl group-containing conjugated ionic polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide], was synthesized by the activated polymerization of 2-ethynylpyridine with p-(2-bromoethyl) phenol without any additional initiator or catalyst. The polymerization proceeded well to give a moderate yield (65%) of polymer at a reaction temparature of 90$^{\circ}C$. Another polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium tetraphenylborate], was readily prepared by the ion-exchange reaction of poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide] with sodium tetraphenylborate. These polymers were completely soluble in organic solvents such as DMF, DMSO, and acetone, but insoluble in water and ether. Instrumental analyses, such as NMR, IR, and UV-Vis spectroscopies, indicated that the new materials have conjugated polymer backbone systems with the designed substituents and counter anions. X-Ray diffraction analyses of the polymers indicated that they were mostly amorphous.

Microstructure and Properties of Fully Aliphatic Polyimide/Mesoporous Silica Hybrid Composites

  • Mathewst, Anu Stella;Jung, Yu-In;Lee, Tae-Sung;Park, Sung-Soo;Kim, Il;Ha, Chang-Sik;Selvaraj, M.;Han, Mi-Jeong
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.638-645
    • /
    • 2009
  • We report the effect of the amount of the mesoporous material, SBA-15, on the basic traits of fully aliphatic polyimides (API). For this purpose, water soluble, fully aliphatic poly(amic acid) triethyl amine salts ($PAA_{(s)}$) were prepared and mixed with various amounts of SBA-15. Fully aliphatic polyimide hybrid composites containing the SBA 15-type mesoporous silica were synthesized successfully from bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and alicyclic diamine, 4,4'-methylene bis(2-methylcyclohexylamine). The structure of the hybrid composites was confirmed by IR spectroscopic analysis. Scanning electron microscopy revealed the morphology of the compounds. The hybrid composites exhibited good thermal stability, reasonable transparency, and a low dielectric constant.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

Syntheses and Characterization of PBO Precursors Containing Dimethylphenoxy and/or MPEG Pendant Groups (Dimethylphenoxy와 MPEG 팬던트 그룹을 갖는 폴리벤즈옥사졸 전구체의 합성 및 특성)

  • Yoon Doo-Soo;Choi Jae-Kon;Jo Byung-Wook
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.493-500
    • /
    • 2005
  • Polyhydroxyamides(PHAs) having poly(ethylene glycol)methyl ether (MPEG) and/or dimethylphenoxy pendant groups were synthesized by solution polycondensation at low temperature. The inherent viscosities of the PHAs measured at $35^{\circ}C$ in DMAC or DMAc/LiCl solution were in the range of $0.51\~2.31dL/g$. This precursor polymers were studied by FT-IR, $1H-NMR$, DSC, and TGA. Solubility of the precursors with higher MPEG unit was increased, especially the polymer having MPEG $(M_n=1100)$ was soluble or partially soluble in ethanol, methanol, and water as well as aprotic solvents, but the PBOs were nearly insoluble in a variety of solvents. PHAs were converted to polybenzoxazoles (PBOs) by thermal cyclization reaction with heat of endotherm. In case of the precursors having MPEG nit, the precursor polymers with a higher $M_n$ were fully cyclized at a lower temperature than one with a lower $M_n$.

Preparation of Monodisperse Poly(Acrylic acid) with a Water-Soluble Initiator by Solution Polymerization in Aqueous Phase (수용액 내에서 수용성개시제를 이용한 단분산성 폴리아크릴산의 용액중합)

  • Park, Moonsoo;Kim, Yeji
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2014
  • Solution polymerization was conducted with water-soluble acrylic acid (AA) as a monomer and potassium persulfate (KPS) as an initiator at a selected temperature between $60^{\circ}C$ and $90^{\circ}C$ with water as a reaction medium. When the ratio between AA and water was reduced or initiator concentration increased, molecular weights decreased. An increase in the reaction temperature produced lower molecular weights. The polydispersity index was close to 1.5 in most of the reactions. An increase in the stirring speed up to 400 rpm led to a progressive increase in molecular weights. When the stirring speed reached 800 rpm, however, we found that both the number and weight average molecular weights decreased. The glass transition temperature was nearly independent of moelcular weights and determined to be between $113^{\circ}C$ and $116^{\circ}C$.

Synthesis and Characteristics of Cationic Polyurethane-Acrylates as a Retention Aid (양이온성 폴리우레탄-아크릴레이트계 보류향상제의 합성 및 특성)

  • Han, Chul;Kim, Doo-Won;Yoon, Doo-Soo;Kim, Sun;Hong, Wan-Hae;Kim, Jung-Gyu
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.209-216
    • /
    • 2004
  • Two types of polyurethane-acrylate polymer were synthesized by reaction of 2-hydroxyethyl methacrylate(HEMA), acrylamide(AA), and polyurethane prepolymer. Water-soluble cationic polyurethane/acrylate retention aids were prepared by using polyurethane-acrylate, benzyl chloride and distilled water. The retention, drainage and strength properties of the retention aids were investigated. The retention of cationic polyurethane/acrylate type retention aids maintained around 70 % regardless of nm. COD value of white water was much reduced by adding the retention aids to it. Drainage property was also improved by addition of the retention aids. In addition, specific compression strength of the paper was improved a little by addition of the retention aids. PU-HEMA type showed better performance than PU-AA in terms of compression strength of the paper.

Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process (초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가)

  • Park, Jae-Hyun;Chi, Sang-Cheol;Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.

Enhanced stability of NADH/dehydrogenase mixture system by water-soluble phospholipid polymers

  • Fukazawa, Kyoko;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • To maintain activity in a coenzyme/enzyme mixture system, such as ${\beta}$-nicotinamide adenine dinucleotide (NADH)/dehydrogenase, the water-soluble 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers as an additive were synthesized and investigated for their stabilizing function. The inhibitor for the NADH/dehydrogenase reaction was spontaneously formed when the NADH was stored in the dehydrogenase solution. Therefore, we hypothesized that if the additive polymer could interact with an inhibitor without any adverse effect on the dehydrogenase, the activity in the NADH/dehydrogenase mixture could be maintained. We selected lactose dehydrogenase (LDH) as the enzyme, and the NADH was dissolved and incubated at $37^{\circ}C$ in the LDH solution containing the polymers. The phospholipid polymers used in this study were poly(MPC) (PMPC), poly(MPC-co-3-trimethylammonium-2-hydroxypropyl methacrylate chloride) (PMQ) and poly[MPC-co-potassium 3-methacryloyloxypropyl sulfonate ($MSO_3$)] ($PMMSO_3$). The poly($MSO_3$) was used as a reference. For the PMQ and $PMSO_3$ aqueous solutions, the activity of the NADH/LDH mixture system decreased with incubation time as the same level or lower than that in the Tris buffered solution in the absence of the polymers. However, for the poly($MPC-co-MSO_3$) ($PMMSO_3$) aqueous solution, the activity of the NADH/LDH mixed system was six times higher than that in the buffered solution even after a 3-days incubation. The LDH activity was 1.5-1.8 times higher in the presence of the $PMMSO_3$ compared with that in the $PMSO_3$ solution. The mixture of two polymers, poly(MPC) and poly($MSO_3$), did not produce any stabilization. Thus, both the MPC and $MSO_3$ units in the polymer chain had important and cooperative effects for stabilizing the NADH/LDH mixture.

Copolymerization of N-Vinylurea and Vinyl Acetate (Ⅰ). Synthesis of N-Vinylurea-Vinylalcohol Copolymer (N-비닐尿素와 醋酸비닐의 混成重合 (第1報). N-비닐尿素-비닐알코올混成重合體의 合成)

  • Woo Sik Kim;Hak-ki Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.73-79
    • /
    • 1980
  • N-Vinylurea(VU) was radically copolymerized with vinyl acetate (VAc). VU-vinyl alcohol (VA) copolymer, which is a water-soluble polymer with pendent urea and hydroxyl groups, was synthesized by the methanolysis of the VU-VAc copolymer.VU shows vinyl polymerization, and this result is in agreement with that of Nozakura, et al. Huggins constant for the aqueous solution of the VU-VA copolymer containing more than about 30 mole percent of VU was observed to be a high value.

  • PDF

Polyethyleneimine Derivative for Nucleic Acid Model

  • Lee, Chan-Woo;Chae, Hee-Jeong;Kwon, Young-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • Water-soluble polyethyleneimine (PE) derivatives containing nucleic acid bases and hydrophilic amino acids such as homoserine (Hse) and serine were prepared by the activated ester method as nucleic acid models. From spectroscopic measurements, the polymers were found to interact with DNA accompanied by an induction of conformational change. Hypochromicity in UV spectra indicated that a stable polymer complex was formed between poly (A) with PEI­Hse-Ura by complementary hydrogen bonding with equimolar nucleic base units (adenine:uracil=1:1). The induced conformation of DNA by the interaction with the polymer containing uracil and homoserine (PEI-Hse-Ura) was concluded to be a super triple helical structure. The formation of the polymer complex, DNA: PEI-Hse-Ura, was found to be affected by the presence of metal ions such as $Ca^{2+}\;and\;Cu^{2+}$.