• Title/Summary/Keyword: water resource protection area

Search Result 21, Processing Time 0.024 seconds

A review of water protection zone policies in other countries (해외 상수원 보호구역 정책에 관한 고찰)

  • Ryu, Munhyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.83-88
    • /
    • 2020
  • Since water quality protection is an important issue for the health and survival of the people, various policy efforts are being made to prevent water pollution in any country. This paper seeks to find policy alternatives for Korea's water resource protection area by examining policies related to water resource protection system in the United States and Europe.

Analysis of Bacterial Diversity in Water from the Han River Water Source Protection Area via a Pyrosequencing Assay (파이로시퀀싱을 이용한 한강상수원보호구역 수계 중의 세균 다양성)

  • Kim, Heejung;Kaown, Dugin;Kim, Changsoo;Lee, Siwon
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.274-279
    • /
    • 2016
  • Objectives: We investigated bacterial diversity in the Han River water resource protection area in order to provide basic microbiological information on the drinking water safety of the Seoul metropolitan region. Methods: Samples were collected in the spring and winter, but not during the rainy season. Pyrosequencing, gene amplification, and extraction of nucleic acids were employed in this study. Results: In total, 57 and 48 operational taxonomic units were respectively analyzed in samples collected during spring and winter. Proteobacteria were predominant in all samples. The samples contained phylogenetically diverse bacterial communities, with eleven major phyla and 36 genera. Cyanobacteria were predominant in the spring samples, but not in the winter samples. The predominant species in the samples collected during both seasons belonged to the genus Aquamicrobium and Bradyrhizobium. Moreover, no pathogenic bacteria were detected in the samples. Conclusion: Proteobacteria were predominant in the samples from the Han River water source protection area. Cyanobacteria were more predominant in the spring samples than in the winter samples, but Aquamicrobium and Bradyrhizobium were predominant in both sampling seasons.

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

The Roles and Meanings of Environmental Conflict and Movement in Rural Region : A Case Study on Organic Farming Movement at Paldang Region, Yangpyung-gun (농촌지역 환경갈등과 농촌주민 환경운동의 역할과 의미 : 양평군 팔당지역 유기농업운동을 사례로)

  • Lee, Young-Min;Hur, Nam-Hyuk
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.4
    • /
    • pp.18-32
    • /
    • 2001
  • Korean society has frequently seen the conflicts between environmentally oriented ideology and development ideology which generally take shape as regional problems. An interesting example is the case of Paldang water resource protection area in Yangpyung-kun, Kyunggi Province. At the area, the rural residents are trying to take regional development by utilizing as much as natural resource in the region, and the central government is trying to make clean water sustained for the public interest of the whole people living within the supplying area of the water resource. Accordingly, the conflict is inevitable. It is the role of environmental movement group that makes us pay attention to this region. Under the present situation regarding environmental protection as a core keyword, the environmental protection groups tend to stand on the side of the central government. That is, those groups let the government consolidate its dominance discourse, which help the resistance discourse of the residents weakened. This basic structure of relationship sometimes touches off the situations of antagonistic confrontation. It is the group for organic fanning movement on the region that is playing a significant mediating role between the two. It has eased severe confrontation, and has persuaded the residents, expecially the farmers, to accept so-called win-win strategies which are related with various kind of organic fanning. The agriculture can be regarded as a win-win action because it is a way of fanning adapted to the protected natural environment. It is taking firm hold in this region as an alternative which can satisfy the ideology of 'sustainable development' or 'sustainability'. It could give us a kind of paradoxical confusion that the strategies of regional development of pro-environment are being carried out in the region where the residents are fighting against the government's strict control of natural environment. The example of this region, however, could show a significant direction for solving the continuous problem of conflict between environmental protection and regional development.

  • PDF

논산지역 간이급수시설 수질특성에 대한 연구

  • Go Gyeong-Seok;Lee Jin-Su;Kim Tong-Gwon;Kim Jae-Gon;Jo Seong-Hyeon;Seok Hui-Jun;Kim Hyeong-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.344-347
    • /
    • 2005
  • The purpose of the study for the development of the technologies of water quality monitoring and contamination protection at water resource aquifer is to secure the groundwater as potable water resources. The results of water analysis as a basis of potable water criteria showed that 30 groundwater samples among 138 samples of small water supply system (21.7%) were exceeded the water criteria. The concentrations of Cl, $NO_3$ and Na for granite area are higher than those of gneiss and metasedimentary rocks of Ogcheon belt area and they are caused by the high vulnerability of groundwater at granite region where the residential area and cultivated land are concentrated. The spatial distribution of components indicated the close relationships between water quality and geology, land use, and topography. The multivariate statistical results showed that the water samples are divided into three groups by geology.

  • PDF

Evaluating Quantitative Expansion Goals of the National Protected Areas Integrated System (국가 보호지역 통합 시스템의 양적 확대 목표에 대한 평가)

  • Hong, Jin-Pyo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.3
    • /
    • pp.57-65
    • /
    • 2018
  • The study is conducted to establish the National Protected Areas Integrated System(NPAIS) which includes National Protected Areas(NPAs) and other conservation measures in terms of effective ways for biodiversity conservation. Additionally, it is carried out to evaluate progress toward quantitative expansion goals in Aichi biodiversity Target 11. The NPAIS consists of NPAs and other effective area-based conservation measures(OECMs). There are two different types of OECMs. OECMs type I, including water-source protection Areas(WPA), riparian zones(RZ), fishery-resource protection zones (FPZ), and urban natural park zones(UNPZ), is a potential protected area which is recommended to be incorporated into the NPAs for effective management. OECMs type II means development restriction zones(DRZ), natural recreation forests(NRF), and buffer zones for Korea national arboretum(BKNA). As a result of evaluating the quantitative expansion goals of the NPAIS, terrestrial and inland water protected areas exceed 17% of the quantitative goal in Aichi biodiversity Target 11. The larger the area of individual OECMs and the lower the degree of overlap with NPAs, the higher the contribution of them to the terrestrial and inland water protected areas. DRZ contributes to enlarge more than 3% of quantitative expansion. And RZ and NRF contribute more than 1%. The marine protected areas are expanded by $1,425km^2$ through FPZ, but the expanded area is very small as comparing with the total marine area. It adds only 0.321% to the quantitative expansion. The rest of OECMs also has very poor quantitative expansion contributions in the marine area. Consequently, the NPAIS is effective for quantitative expansion of land areas, but not for marine areas.

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

A Study on the Planning Characteristics of Sustainable Housing Area (지속가능성의 함의를 고려한 주거지 계획특성 연구)

  • Kim, Myo-Jung
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.107-119
    • /
    • 2008
  • The purpose of this study was to provide basic information about the study of model development of sustainable housing area. So, this study identified the concept of sustainable development and condition after investigation Habitat Agenda II, and the 10 items of agenda were used to constitute the case study framework. This study found the development characteristics through the case study of 6 sustainable housing areas in the world(US, UK and Australia), and searched the missing point in the sustainable development concept. The major findings are summarized as follows: First, the attempt of environmental sustainability was restrictive such as minimal environment pollution and waste, water resource protection and conservation of nature ecosystem. Second, in social-culture sustainability, the effort of right to housing, solution of urban squatter and housing welfare eliminated. Third, in economic sustainability, the attempt of prevent natural disaster, technological and industrial disaster excluded.

Analysis of correlation between groundwater level decline and wetland area decrease

  • Amos Agossou;Jae-Boem Lee;Bo-Gwon Jung;Jeong-Seok Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.374-374
    • /
    • 2023
  • Groundwater is the main source of water on which relies many countries in case of emergency, this is the case of Japan in 2011 after the great Sendai Earthquake. This important resource is found to be heavily influenced by human induced factors such as wetland area reduction. For groundwater sustainable management in perfect cohesion with wetland it is important to understand the relationship between both resources. Wetlands have a strong interaction with both groundwater and surface water, influencing catchment hydrology and water quality. Quantifying groundwater-wetland interactions can help better identify locations for wetlands restoration and/or protection. This study uses observation data from piezometers and wetland to study the qualitative and quantitative aspects of the correlation. Groundwater level, wetland area, chemical, organic and inorganic contaminants are the important parameters used. the results proved that few contaminants in the wetland are found in groundwater and in general the wetland quality does not affect that much groundwater quality. The strong linear relationship found between wetland water level and nearest groundwater level proved that, in term of quantity, groundwater and wetland are strongly correlated. While wetland becoming dry, groundwater level has dropped in the region about 0.52m. The area of wetland was found to be lightly correlated with groundwater level, proving that wetlands dry has contributed to groundwater level declining. This study has showed that whilst rainfall variability contributed to the decline and loss of wetlands, the impacts from landuse changes and groundwater extraction were likely to be significant contributors to the observed losses.

  • PDF

O&M Evaluating for Sewage Treatment Plants in China as a Developing Country (개발도상국 중국의 하수처리장 운영.관리능 평가)

  • Kim, Kwon-Youn;Moon, Yong-Taik;Kim, Hong-Suck;Kim, Ji-Yeon
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.27-36
    • /
    • 2006
  • For the last 20 years, China has transformed itself from a rural economy into an industrial giant, averaging over 8 % annual growth of GDP. Unfortunately, this rapid growth has taken a significant toll on its natural resource base as well, particularly water resources. These problems have been exacerbated by a low level of sewage treatment technology and by the operating and maintenance (O&M). In case of urban areas, most big cities in China have a well functioning sewage system comprised of sewers and sewage treatment plants (STPs). Nevertheless, the existing STPs are still not capable of properly treating the sewage, both quantitatively and qualitatively. The rural areas in China cover a large land, with two-third of the nation's population. The low educational and poor economic states make it hard to process self-protection and management. In the surveyed area in Henan, there was no STPs put into use as of 2004, and the sewer lines are not well organized. The big issue for the currently planned STPs is the collection system not included in the plans.