• 제목/요약/키워드: water removal

검색결과 4,252건 처리시간 0.027초

태양열 기반 증기 유동을 이용한 미세먼지 제거 연구 (Solar-driven steam flow for effective removal of particulate matters (PM))

  • 김정주;김정재
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.130-135
    • /
    • 2021
  • Water vapor has received worldwide large attention due to its broad technological implications ranged from resource production and environmental remediation. Especially, one of the typical areas where the water vapor is important is the removal of PM (particulate matter) which causes a critical hazard to human health. However, most vapor-based PM removal methods are limited in removing PM2.5 by using relatively large water droplets and consume large energy. Here, we propose a superhydrophilic thermally-insulated macroporous membrane to generate steam flow. The water vapor directly captures PM with steam flow and hygroscopic characteristic of PM. The steam, the cluster of water vapor, from the membrane gives rise to high removal efficiencies compared to those of the control case without light illumination. To reveal PM removal mechanism, the steam flow and PM were quantitatively analyzed using PIV measurement. The proposed steam generator could be utilized as an economical and ecofriendly platform for effective PM removal at a fairly low cost in a sustainable, energy-free, and harmless-to-human manner.

수중 미량 잔류항생물질 Ciprofloxacin, Trimethoprim, Enrofloxacin의 오존산화제거 (Removal of Residual Antibiotics-Ciprofloxacin, Trimethoprim and Enrofloxacin-from Water by Ozone Oxidation)

  • 한민수;최연우;송준혁;왕창근
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.149-156
    • /
    • 2018
  • Oxidation of Ciprofloxacin, Trimethoprim, and Enrofloxacin by ozone was experimentally investigated to observe the effects of background water quality (such as ultrapure water, humic acid, and biologically treated wastewater) and water temperature on the removal rate of these antibiotics, and, thereby, to be able to provide design information when the ozone treatment process is adopted. Initial concentrations of the antibiotics spiked to $10{\mu}g/L$, and the ozone dose was 1, 2, 3, 5, and 8 mg/L. While the removal rate of Ciprofloxacin under ultrapure water background by ozone oxidation was over 99%, the removal rate under humic acid and biologically treated wastewater background was markedly lower, in the range of 49.3% ~ 99% and 19.8 % ~ 99 %, respectively. When water temperature is decreased from $20^{\circ}C$ to $4^{\circ}C$, the removal rate is reduced from the range of 19.8% ~ 99 % to the range of 7.5 % ~ 99 % under a biologically treated wastewater background. The effects of background and temperature on the removal rate of Trimethoprim and Enrofloxacin were similar to that of Ciprofloxacin, but the degree was different. Therefore, it is concluded that the background of water to be treated, as well as water temperature, should be taken into consideration when the design factor, such as ozone dose, is determined, so that the treatment objective of the ozone treatment process can be most effectively met.

하천수를 정화하는 갈대습지의 개수부에 의한 질소제거 비교 (Comparison of Nitrogen Removal in Reed Wetlands with and Without Open Water Purifying Effluent from a Treatment Pond)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제8권1호
    • /
    • pp.37-44
    • /
    • 2005
  • Nitrate($NO_3-N$) and total nitrogen(TN) removal by a reed wetland with open water(Wetland 1) was compared with that of a reed wetland without open water(Wetland 2) from March to October 2002. The two wetlands were 25mL by 6mW. An open water area, 3mL by 6mW was designed at the middle of Wetland 1. Reeds(Phragmites australis) were transplanted into the wetlands in June 2000. Water of Sinyang Stream flowing into the Kohung Estuarine Lake located in the southern part of Korea was pumped into a primary treatment pond, whose effluent was discharged into the secondary pond. Effluent from the secondary pond was funneled into the wetlands. Inflow into the wetlands averaged about 20.0$m^3$/day and their hydraulic retention time was approximately 1.5 days. Average $NO_3-N$ removal by Wetland 1 was 117.61mg/$m^2{\cdot}day$ and that by Wetland 2 was 106.39mg/$m^2{\cdot}day$. $NO_3-N$ removal efficiency of Wetland 1 and 2 was 37% and 34%, respectively. TN removal by Wetlands 1 and 2 averaged 226.80 and 214.54mg/$m^2{\cdot}day$, respectively. TN abatement efficiency of Wetland 1 was 43% and that of Wetland 2 was 40%. $NO_3-N$ removal efficiency of Wetland 1 was significantly higher(p=0.038) than Wetland 2. TN removal efficiency of Wetland 1 was also significantly higher(p=0.044) than Wetland 2. The wetland with open water was more efficient for removal of $NO_3-N$ and TN than one without.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • 제33권4호
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Water treatment sludge for removal of heavy metals from electroplating wastewater

  • Ghorpade, Anujkumar;Ahammed, M. Mansoor
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.92-98
    • /
    • 2018
  • Suitability of aluminium-based water treatment sludge (WTS), a waste product from water treatment facilities, was assessed for removal of heavy metals from an electroplating wastewater which had high concentrations of copper and chromium along with other heavy metals. Batch tests with simulated wastewater in single- and multi-metal solutions indicated the influence of initial pH and WTS dose on removal of six metals namely Cu(II), Co(II), Cr(VI), Hg(II), Pb(II) and Zn(II). In general, removal of cationic metals such as Pb(II), Cu(II) and Zn(II) increased with increase in pH while that of anionic Cr(VI) showed a reduction with increased pH values. Tests with multi-metal solution showed that the influence of competition was more pronounced at lower WTS dosages. Column test with diluted (100 times) real electroplating wastewater showed complete removal of copper up to 100 bed volumes while chromium removal ranged between 78-92%. Other metals which were present in lower concentrations were also effectively removed. Mass balance for copper and chromium showed that the WTS media had Cu(II) and Cr(VI) sorption capacities of about 1.7 and 3.5 mg/g of dried sludge, respectively. The study thus indicates that WTS has the potential to be used as a filtration/adsorption medium for removal of metals from metal-bearing wastewaters.

Electro-chemical Removal Properties of Water Pollutants by Ag-ACF from Piggery Waste

  • Oh, Won-Chun;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.105-113
    • /
    • 2006
  • The electro-chemical removal (ECR) of water pollutants by metal-ACF electrodes from wastewater was investigated over wide range of ECR time. The ECR capacities of metallic ACF electrodes were related to physical properties such as adsorption isotherm, surface area and pore size and to reaction time. Surface morphologies and elemental analysis for the metal supported ACFs after electro-catalytic reaction were investigated by scanning electron microscopy (SEM) and energy disperse X-ray (EDX) to explain the changes in adsorption properties. The IR spectra of metallic ACFs for the investigation of functional groups show that the electro-catalytic treatment is consequently associated with the removal of pollutants with the increasing surface reactivity of the activated carbon fibers. The metal-ACFs were electro-catalytically reacted to waste water to investigate the removal efficiency for the COD, T-N, $NH_4$-N, $NO_3$-N and $NO_2$-N. From these removal results of the piggery waste using metallic ACFs substrate, satisfactory removal performance was achieved. The removal efficiency of the metallic ACFs substrate was mainly determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

섬유여과기와 전기분해조를 병합한 물 재이용 시스템 설계 (Design of a Water Reuse System Combined with a Fiber Filtration and Electrolysis)

  • 신춘환
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1385-1391
    • /
    • 2015
  • A water reuse system was designed for a demonstration plant by combining fiber filtration and electrolysis. A discharged dye wastewater after treated with biomedia was used in this study. It was found that an additional removal of suspended solids (SS) was feasible with 2-stage filtration while electrolysis was not effective. Also, $COD_{cr}$ and $COD_{Mn}$ were not removed with 2 -stage filtration but electrolysis resulted in about 26.9% additional removal. This indicates that electrolysis play an important role in organic removal. Removal of T-N and T-P was negligible with 1 and 2-stage fiber filtration and low-level electrolyte. However, with 2000 ppm of electrolyte, their removal efficiencies were about 83.1 and 60%, respectively, suggesting that the removal rates are well associated with the electrolyte concentrations. With high-level electrolyte, colority was removed about 82% while chlorine ions were removed only about 10%. Therefore, to treat underground water containing high-level salinity in the follow-up study, based on the results in this paper, a combined system with selection of additional unit process and reverse osmosis will be designed.

쓰레기 매립장 침출수 중 질소저감방안 (Anaerobic Treatment of Nitrate in Landfill Leachate)

  • 권영호;김호주
    • 상하수도학회지
    • /
    • 제12권4호
    • /
    • pp.70-77
    • /
    • 1998
  • On this study, removal ability of nitrate was researched in the anaerobic zone arounding collection pipes in landfill. Stability state time of column was after 20 days and 20~90ml/day in flux. In this time, removal rate of phosphate was about 80%. Removal ability and average removal rate of CODCr is $36g/m^3{\cdot}d$, 25.3%, respectively. It was that reactor is able to remove more nitrate. Maximum nitrate removal ability was $4.83g/m^3{\cdot}d$.

  • PDF

다단계 필터시스템에서의 음용수 중 1,4-Dioxane 제거 (A study on removal of 1,4-dioxane in drinking water by multi filtration system)

  • 이강진;표희수;유제강;이대운
    • 분석과학
    • /
    • 제18권2호
    • /
    • pp.154-162
    • /
    • 2005
  • 최근 국내 일부 정수장에서 검출된 것으로 보도되어진 바 있어 우리나라의 하천 수의 오염이 우려되고 있고, 일부 오염정도가 높은 하천수의 정화과정에서 제거가 완전히 이루어지지 않는 것으로 사료되는 1,4-dioxane은 그 독성과 음용수의 섭취량을 고려할 때 음용수 섭취로 인한 인체효과가 문제화 될 것으로 판단된다. 따라서 본 연구에서는 활성탄과 멤브레인으로 구성된 다단계 필터시스템에서 음용수 중에 존재하는 1,4-dioxane에 대한 제거효과에 대하여 연구하였다. 확인방법은 MTBE을 이용한 액체-액체 추출방법을 사용하였으며 제거실험은 압력별 필터단계별로 30 L마다 300 L 까지 실시하였다. 그 결과 초기에는 1차 활성탄 필터이후 70% 이상의 제거효과를 나타내었으며 멤브레인 이후 95%이상 그리고 2차 활성탄 이후 100% 제거되는 결과를 나타내었다. 그러나 통수량이 증가할수록 각 단계별 제거율은 점차 감소하였으며 300 L 통수 후 1차 활성탄에서 30%, 멤브레인 이후 88% 그리고 최종 활성탄 이후 99%의 제거율을 나타내었다.

표준정수처리 파일럿에서 Cryptosporidium 유사체를 이용한 Cryptosporidium 제거효율 평가 (Evaluation on Removal Efficiency of Cryptosporidium using Surrogate in Pilot Plant of Conventional Water Treatment Process)

  • 박상정;정현미;최희진;전용성;김종민;김태승;정동일
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.399-405
    • /
    • 2010
  • In order to quantify removal efficiency of Cryptosporidium in water treatment process and evaluate factors influencing removal efficiency of Cryptosporidium in each step of water treatment process, large pilot plant system ($100m^3/day$) and Cryptracer, surrogate of Cryptosporidium, were used. The removal efficiency of Cryptracer was around 0.8~1 log in coagulation process and 3.3~4.8 log in sand filtration process under ordinary environmental conditions. Factors influenced removal efficiency of Cryptracer were high fluctuate turbidity and water temperature. High fluctuate turbidity made difficult to adjust optimum PAC concentration, caused to drop removal efficiency of coagulation process (0.5 log). Inadequate coagulation process influenced to sand filtration process (2.1 log), caused to decline of removal efficiency in the whole process (2.6 log). Low temperature below $2^{\circ}C$ also influenced coagulation process (0.6 log). Therefore, It is shown that careful attention in the control of Cryptosporidium is needed in flood period, when high fluctuate turbidity would be, and winter period of low temperature.