• Title/Summary/Keyword: water quality modeling

Search Result 445, Processing Time 0.032 seconds

Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake (호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구)

  • Yeom, Bo-Min;Lee, Hye Won;Moon, Hee-Il;Yun, Dong-Gu;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

Assessment through Statistical Methods of Water Quality Parameters(WQPs) in the Han River in Korea

  • Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.90-101
    • /
    • 2015
  • Objective: This study was conducted to develop a chemical oxygen demand (COD) regression model using water quality monitoring data (January, 2014) obtained from the Han River auto-monitoring stations. Methods: Surface water quality data at 198 sampling stations along the six major areas were assembled and analyzed to determine the spatial distribution and clustering of monitoring stations based on 18 WQPs and regression modeling using selected parameters. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR), cluster analysis (CA) and principal component analysis (PCA) were used to build a COD model using water quality data. Results: A best GA-MLR model facilitated computing the WQPs for a 5-descriptor COD model with satisfactory statistical results ($r^2=92.64$,$Q{^2}_{LOO}=91.45$,$Q{^2}_{Ext}=88.17$). This approach includes variable selection of the WQPs in order to find the most important factors affecting water quality. Additionally, ordination techniques like PCA and CA were used to classify monitoring stations. The biplot based on the first two principal components (PCs) of the PCA model identified three distinct groups of stations, but also differs with respect to the correlation with WQPs, which enables better interpretation of the water quality characteristics at particular stations as of January 2014. Conclusion: This data analysis procedure appears to provide an efficient means of modelling water quality by interpreting and defining its most essential variables, such as TOC and BOD. The water parameters selected in a COD model as most important in contributing to environmental health and water pollution can be utilized for the application of water quality management strategies. At present, the river is under threat of anthropogenic disturbances during festival periods, especially at upstream areas.

An Integrated Environmental Impact Assessment Model using FEMWASP and ArcView (FEMWASP 모형 및 ArcView를 결합한 통합적 환경영향평가 모형의 개발 및 적용)

  • Kim, Joon Hyun;Han, Young-Han;Choi, Yoon-Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.65-70
    • /
    • 1998
  • An integrated EIA tool was developed to analyze present and future environmental quality status of Youngwol Basin using ArcView and FEMWASP. All the input data and computational results were prepared and graphically displayed on the basis of ArcView. FEMWASP and ArcView were integrated using the command "system.execute" in script of Avenue. Modeling items were inserted in the GUI of ArcView. The modeling result showed that the water quality of the proposed Yougwol Lake would be at the stage of eutrophication. The developed system can be applied to the water quality management of drinking water resources to set up the regulatory acts and project plan of governmental policy.

  • PDF

Mathematical Modeling for the Stream Water Quality Prediction in the Rivers-Stream Water Quality Prediction based on WQRRS Model in the Han River- (하천수질예측 Model(I)-WQRRS Model에 의한 한강 하천수질예측-)

  • Sim, Sun-Bo;Lee, Gwang-Ho;Yu, Byeong-Ro
    • Water for future
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 1984
  • This study has performed to investigate and evaluate the simulation model of steam Water Quality and the simulated results have 매내 been compared with the observed data in the Han River. The predicted BOD, Total-N, Coliform concentrations in the downstream of the Chungrang-Cheon are 8.6m/1, 4.5mg/1 and $3.7X10^5$ respectively. It is interesting to note that the results simulated based on the WQRRS model are extremely in good agreement and also are very much comparable with those observed data reported previously references.

  • PDF

Reviewing the Applications of Three Countries' Ground Water Flow Modeling Regulatory Guidelines to Nuclear Facilities in Korea

  • Lee, Chung-Mo;Hamm, Se-Yeong;Hyun, Seung Gyu;Cheong, Jae-Yeol;Wei, Ming Liang
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • The numerical analysis of groundwater flow is indispensable for predicting problems associated with water resource development, civil works, environmental hazards, and nuclear power plant construction. Korea lacks public regulatory procedures and guidelines for groundwater flow modeling, especially in nuclear facility sites, which makes adequate evaluation difficult. Feasible step-by-step guidelines are also unavailable. Consequently, reports on groundwater flow modeling have low-grade quality and often present controversial opinions. Additionally, without public guidelines, maintaining consistency in reviewing reports and enforcing laws is more challenging. In this study, the guidelines for groundwater flow modeling were reviewed for three countries - the United States (Documenting Groundwater Modeling at Sites Contaminated with Radioactive Substances), Canada (Guidelines for Groundwater Modelling to Assess Impacts of Proposed Natural Resource Development Activities), and Australia (Australian Groundwater Modelling Guidelines), with the aim of developing groundwater flow modeling regulatory guidelines that can be applied to nuclear facilities in Korea, in accordance with the Groundwater Act, Environmental Impact Assessment Act, and the Nuclear Safety Act.

A Study on Development of a GIS based Post-processing System of the EFDC Model for Supporting Water Quality Management (수질관리 지원을 위한 GIS기반의 EFDC 모델 후처리 시스템 개발 연구)

  • Lee, Geon Hwi;Kim, Kye Hyun;Park, Yong Gil;Lee, Sung Joo
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.39-47
    • /
    • 2014
  • The Yeongsan river estuary has a serious water quality problem due to the water stagnation and it is imperative to predict the changes of water quality for mitigating water pollution. EFDC(Environmental Fluid Dynamics Code) model was mainly utilized to predict the changes of water quality for the estuary. The EFDC modeling normally accompanies the large volume of modeling output. For checking the spatial distribution of the modeling results, post-processing for converting of the output is prerequisite and mainly post-processing program is EFDC_Explorer. However, EFDC_Explorer only shows the spatial distribution of the time series and this doesn't support overlay function with other thematic maps. This means the impossible to the connection analysis with a various GIS data and high dimensional analysis. Therefore, this study aims to develop a post-processing system of a EFDC output to use them as GIS layers. For achieving this purpose, a editing module for main input files, and a module for converting binary format into an ASCII format, and a module for converting it into a layer format to use in a GIS based environment, and a module for visualizing the reconfigured model result efficiently were developed. Using the developed system, result file is possible to automatically convert the GIS based layer and it is possible to utilize for water quality management.

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+ (RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링)

  • Kim, Jun Song;Seo, Il Won;Shin, Jaehyun;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.495-507
    • /
    • 2021
  • With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.

A Water Quality Modeling Study of Chunggye Stream during Combined Sewer OverFlow Period (합류식 하수관거 월류수 유입 기간 동안에 나타나는 청계천 수질 변화 모델 연구)

  • Yi, Hye-Suk;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1340-1346
    • /
    • 2005
  • A water quality modeling study was performed for Chunggye stream during combined sewer overflow(CSO) period, utilizing the diagnostic system for water management in small watershed, CREEK-1(Cyber River for Environment and Economy in Korea). This system integrated geogaphic information system, data base, landscape ecological model(FRAGSTATS), watershed model(SWMM), water quality model (WASP5), and computer graphic. In this study, the watershed model and water quality model were extensively utilized so as to simulate water qualities and flow in Chunggye stream during wet periods. The Chunggye stream watershed was divided into 18 sub-basins in the watershed model and the stream reach into 11 segments in the water quality model. The watershed model was validated against field measurements of BOD, TN, TP, and flow at the downstream location, where the model results showed a reasonable agreement with the field measurements at all parameters. From this study, it was shown that the stream water quality would change along with elapsed time from rainfall start as well as rainfall intensity. The model results indicated that the water quality would significantly upgrade due to the first flush and high sewage ratio of CSO at the beginning of rainfall event, but become degraded along with the runoff increase due to dilution effect.

Calibration and uncertainty analysis of integrated surface-subsurface model using iterative ensemble smoother for regional scale surface water-groundwater interaction modeling

  • Bisrat Ayalew Yifru;Seoro Lee;Woon Ji Park;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.287-287
    • /
    • 2023
  • Surface water-groundwater interaction (SWGI) is an important hydrological process that influences both the quantity and quality of water resources. However, regional scale SWGI model calibration and uncertainty analysis have been a challenge because integrated models inherently carry a vast number of parameters, modeling assumptions, and inputs, potentially leaving little time and budget to explore questions related to model performance and forecasting. In this study, we have proposed the application of iterative ensemble smoother (IES) for uncertainty analysis and calibration of the widely used integrated surface-subsurface model, SWAT-MODFLOW. SWAT-MODFLOW integrates Soil and Water Assessment Tool (SWAT) and a three-dimensional finite difference model (MODFLOW). The model was calibrated using a parameter estimation tool (PEST). The major advantage of the employed IES is that the number of model runs required for the calibration of an ensemble is independent of the number of adjustable parameters. The pilot point approach was followed to calibrate the aquifer parameters, namely hydraulic conductivity, specific storage, and specific yield. The parameter estimation process for the SWAT model focused primarily on surface-related parameters. The uncertainties both in the streamflow and groundwater level were assessed. The work presented provides valuable insights for future endeavors in coupled surface-subsurface modeling, data collection, model development, and informed decision-making.

  • PDF

Analyzing the Change of Surface Water and Groundwater Systems Caused by Tunnel Construction in Northern Ulsan City (울산시 북구 지역 터널 굴착에 의한 지표수계 및 지하수계 변화 분석)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Lee, Chung-Mo;Lim, Woo-Ri;Yun, Sul-Min;Park, Heung-Jai
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.81-99
    • /
    • 2018
  • Excessive groundwater discharge by tunneling and tunnel operation can lead to groundwater exhaustion and ground subsidence. Therefore, it is very important to evaluate environmental impact and to establish mitigation measures of the impact related to tunnel excavation based on hydrogeological and modeling approaches. This study examined the depletion of surface reservoirs and valley water due to tunnel excavation through field survey, water quality analysis, tracer test, and groundwater modeling. As a result of field water quality test, the concentration of chemical constituents in groundwater discharge into the tunnel is slightly higher than that of valley water. By the result of laboratory water analysis, both valley water and the groundwater belong to $Ca^{2+}+HCO_3{^-}$ type. Tracer test that was conducted between the valley at the injection point and the tunnel, indicates valley water infiltration into the ground and flowing out to the tunnel, with maximum electrical conductance changes of $70{\mu}S/cm$ in the first test and of $40{\mu}S/cm$ in the second test. By groundwater modeling, the groundwater discharge rate into the tunnel during tunnel construction is estimated as $4,942m^3/day$ and groundwater level recovers in 3 years from the tunnel completion. As a result of particle tracking modeling, the nearest particle reaches the tunnel after 6 hours and the farthest particle reaches the tunnel after 9 hours, similarly to the case of the field trace test.