Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Dalchun station in Han River. Input data is consist of monthly data of concentration of DO, BOD, COD, SS and river flow. And this study selected optimal neural network model through changing the number of hidden layer based on input layer(n) from n to 6n. After neural network theory is applied, the models go through training, calibration and verification. The result shows that the proposed model forecast water quality of high efficiency and developed web-based water quality forecasting system after extend model
A rational management of water resources in estuary reservoirs necessiates the prediction of water quality. In this study, a multiple box model for the water quality prediction was developed as a tool for the purpose of examining an adequate way to improve and maintain the water quality. Some submodels that are suitable for simulating the mixing behavior of pollutant materials in a lake were considered in this model. The model was appiled for predicting water qualities of Haenam Esturay Reservoir. The result from this study can be summarized as follows : 1.A water quality simulation model that can predict the 10-day mean value of water qualities was developed by adding some submodels that simulate the concentrations of chlorophyll-a, BOD, T-P and T-N to the existing Multiple Box Model representing the mixing and circulating of materials by the hydarulic action. 2.As input data for the model developed, the climatic data including precipitation, solar radiation, temperature, cloudness, wind speed and relative humidity, and the water buget records including the pumping discharge and the releasing discharge by drainage gate were ollected. The hydrologic data for the inflow discharge from the watershed was obtained by simulation with the aid of USDAUL-74/SNUA watershed model. Also the water quality data were measured at streams and the reservoir. 3.As a result of calibration and verification test by using four comonents of water quality such as Chlorophyll-a, BOD, T-P and T-N, it was found that the correlation coefficeints between the observed and the simulated water qualities showed greater than 0.6, therefore the capability of the model to simulate the water quality was proved. 4.The result based on the model application showed that the water quality of the Haenam Estuary Reservoir varies seasonally with the harmonic trend, however the water quality is good in winter and get worse in summer. Also it may be concluded that the current grarde of water quality in the Heanam Esutary Reservoir is ranked as grade 4 suitable only for the agricultutal use.
본 연구는 인공수로 또는 인공호수와 같은 환경 친화적 친수공간이 건설됨에 따라 발생되는 수질오염 문제를 수질모형실험을 통해 해소할 수 있는 방법을 연구하였다. 호소수의 개념으로 도입되는 인공수로 및 호수는 제한된 수량 공급으로 인해 수질악화, 악취발생 및 녹조 현상이 일어날 수 있다. 하지만, 이러한 현상을 예상할 수 있는 방법은 수치해석으로만 의지해 왔고 물리적 해석에 의한 검증이 이뤄지지 않아 실제 적용에 대한 어려움이 있었다. 따라서 본 연구에서는 오염된 물과 오염되지 않은 물이 서로 희석되어 영양염류의 농도를 낮추는 현상에 착안하여 원형과 모형의 상사에 영향을 받지 않는 무차원의 물리적 수질모형실험을 실시하였다. 또한 수체 내에서 흐름을 인공적으로 발생시키는 흐름유발기기의 효과 검증과 적용방법을 연구하여 목표수질을 유지할 수 있는 방안을 제시하였다.
The objective of this study is to test the applicability of neural network models to forecast water quality at Naesa and Pyongchang river. Water quality data devided into rainy day and non-rainy day to find characteristics of them. The mean and maximum data of rainy day show higher than those of non-rainy day. And discharge correlate with TOC at Pyongchang river. Neural network model is trained to the correlation of discharge with water quality. As a result, it is convinced that the proposed neural network model can apply to the analysis of real time water quality monitoring.
수질분야에서 물재해 안정성 강화를 위해 과거와 현재의 수질을 분석하여 예측하는 기술을 지속적으로 고도화하는 것이 필요하며 데이터 기반의 예측 모형이 하나의 대안으로 대두되고 있다. 데이터 기반 모형은 복잡하고 광범위한 자료의 양을 기반으로 구축되기 때문에 보다 신뢰도 있는 결과를 얻을 수 있는 입력자료의 조합을 위한 상관관계 분석방법의 적용이 필수적이다. 본 연구에서는 보다 신속하고 정확한 데이터 기반의 수질 예측 모형을 구성하기 위한 선행단계로 Gamma Test를 적용하였다. 먼저 팔당댐의 다양한 수문조건에 따른 해당 유역의 복잡성과 정밀성이 재현된 과거와 현재의 일단위 수질을 최대한 확보하고자 물리적 기반 모형 (HSPF, EFDC)을 구동하였다. 팔당댐 수질예측지점과 팔당댐으로 유입되는 주요 하천의 수질을 대상으로 Gamma Test를 수행한 후 해석결과 (Gamma, Gradient, Standar Error, V-Ratio)를 통해 최적의 자료조합을 선정하는 방법을 제시하였다. 본 연구의 결과는 데이터 기반 모형 구축 시 반복적인 수행과정을 생략하여 시간을 단축하면서 보다 효율적으로 최적의 입력자료를 선정할 수 있는 정량적인 기준을 보여준다.
This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju q and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, CO discharge and precipitation. As a result, it showed that method III of three methods was suitable more han other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.
With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.
This study aims to test the feasibility of combined use of EFDC (Environmental Fluid Dynamics Code) hydrodynamic model and WASP7.3 (Water Quality Analysis Program) model to improve accuracy of water quality predictions of the Yongdam Lake, Korea. The orthogonal curvilinear grid system was used for EFDC model to represent riverine shape of the study area. Relationship between volume, surface and elevation results were checked to verify if the grid system represents morphology of the lake properly. Monthly average boundary water quality conditions were estimated using the monthly monitored water quality data from Korean Ministry of Environment DB system. Monthly tributary flow rates were back-routed using dam discharge data and allocated in proportion to each basin area as direct measurements were not available. The optimum number of grid system was determined to be 372 horizontal cells and 10 vertical layers of the site for 1 year simulation of hydrodynamics and water quality out of iterative trials. Monthly observed BOD, TN, TP and Chl-a concentrations inside the lake were used for calibration of WASP7.3 model. This study shows that EFDC and WASP can be used in series successfully to improve accuracy in water quality modeling. However, it was observed that the amount of data to develop inflow water quality and flow rate boundary conditions and water quality data inside lake for calibration were not enough for accurate modeling. It is suggested that object-oriented data collection systems would be necessary to ensure accuracy of EFDC-WASP model application and thus for efficient lake water quality management strategy development.
한강하류부 수질의 통계학적 해석을 통하여 수질 시계열자료의 기본 통계특성치, 지점별 및 계절별 변동성을 검토하였으며, 유량과 수질인자간의 상관성 분석을 실시하였다. 본류의 주요 6개 지점 및 3개 지류에 대한 통계특성치와 적정분포형을 산정하여 제시하였으며, 시간의존성 및 계절성을 검토하여 제시하였다. 또한, 수질 항목간의 상관성 검토를 통하여 상관성이 높은 수질, 항목간, 그리고 지점간의 상관식을 제시하였다. 추계학적 모의모형의 적용가능성을 확인하였으며, DO 항목은 전 지점간에 높은 상관성을 가지고 있었다. 유량과의 상관관계 검토에 있어서 DO, SS 항목은 유량보다는 수온에 민감하였으며, BOD, COD 항목은 유량이 적은 갈수기에는 유량에 민감한 것으로 나타났다. 수온에 밀접한 영향을 받는 DO 항목외에도 BOD, COD 항목은 계절적인 주기성을 가지고 있었으며, 상호상관 분석결과 DO, BOD, COD 항목 외의 수질 항목들에서도 각 수질 항목들에 내재된 주기성을 찾아볼 수 있었다.
In the water purification plant, the raw water is promptly purified by injecting chemicals. The amount of chemicals is directly related to water quality such as turbidity, temperature, pH and alkalinity. At present, however, the process of chemical reaction to the turbidity has not been clarified as yet. Since the process of coagulant dosage has no feedback signal, the amount of chemical can not be calculated from water quality data which were sensed from the plant. Accordingly, it has to be judged and determined by Jar-Test data which were made by skilled operators. In this paper, it is concerned to model and control the coagulant dosing process using jar-test results in order to predict optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride). The considering relations to the reaction of coagulation and flocculation, the five independent variables(turbidity, temperature, pH, Alkalinity of the raw water, PAC feed rate) are selected out and they are put into calculation to develope a neural network model and a fuzzy model for coagulant dosing process in water purification system. These model are utilized to predict optimum coagulant dosage which can minimize the water turbidity in flocculator. The efficacy of the proposed control schemes was examined by the field test.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.