• Title/Summary/Keyword: water quality management

Search Result 2,271, Processing Time 0.031 seconds

Water quality management of Doam lake around the pasture area (목장지대 주변에 위치한 도암호의 수질관리)

  • Cho, Jae-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 1998
  • Doam Lake is located around the pasture area and Yongpyung Resort. Because of the waste load of domestic animals, nutrient concentration of the stream is high. In this study, waste load of Doam Lake watershed is calculated, and QUAL2E model is applied to the upper part of the Songcheon to calculate the input boundary concentration of Doam Lake. And WASP5 model is applied for the water quality modeling of Doam lake. The results indicate that advanced treatment of domestic animal wastes is necessary for the lake water quality management.

  • PDF

Development of 2-D Water Quality Management Model by Using Reliability Analysis (신뢰도 해석기법을 이용한 2차원 수질관리모형의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Kim, Won;Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.463-474
    • /
    • 2002
  • A two-dimensional water quality management model, Unsteady/Uncertainty Water Quality Model(UUWQM), is developed for a hydrodynamic analysis, an advection-diffusion analysis, and a reliability analysis by using uncertainty technique. The model is applied to the 35 km reach of Sungju to Hyunpoong in the midstream of Nakdong River. 2-D hydrodynamic and water quality analyses are peformed in this reach. Important input variables are decided by sensitivity analysis and verified by Monte Carlo method. Frequency distributions of water quality concentrations are computed from MFOSM method and Monte Carlo method at several locations in this study area. A water quality management system is constructed by calculating the violation probabilities of existing water quality standards.

A Statistical Assessment of Increasing Tidal Mixing Effects on Water Quality in the Shiwha Coastal Reservoir (시화호 해수유통량 증대에 따른 통계학적 수질 영향 분석)

  • Lee, Bum-Yeon;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.425-432
    • /
    • 2021
  • A tidal power plant (TPP) has been in operation since the end of 2011 to improve the water quality of Shihwa Coastal Reservoir (SCR). Tidal mixing rate increased 5.6 times after the TPP operation so that in this study, its effects on water quality was assessed through statistical analysis of long-term water quality monitoring data. It was found that the increased tidal mixing contributed to solving the hypoxia problem in the bottom water by preventing the summer stratification. The analysis also showed that the increased tidal mixing had different effects depending on the relative concentration difference for each water quality substances between the SCR and the outside of SCR. The average concentrations of some substances (chemical oxygen demand, total phosphorus, chlorophyll-a) with higher concentrations than the outside of SCR decreased due to the dilution effect, but the other substances (total nitrogen, dissolved inorganic nitrogen, dissolved inorganic phosphorus) with lower concentrations compared to the outside ones increased on the contrary. Factor analysis also showed a consistent result that the first factor accounting for the water quality was changed from the organic-related substances to the nutrient-related substances after the increased tidal mixing. These results imply that the focus of future water quality management needs shifting from the organic substances to the nutrients, particularly dissolved inorganic nutrients. Considering the effect of inflow seawater on the nutrients, the management area should be extended to cover not only SCR but also a certain area outside of SCR.

Korea Water Resources Policy - from the viewpoint of Korean NGO's (NGO가 바라본 수자원 정책)

  • 김제남
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.23-29
    • /
    • 2003
  • It has been declared in 1992 at Rio about the management of united water control and method of the management of the water resources at the water basin. And it was also mentioned about the protection of fresh water's quality and it's supply under chapter the 18th of the agenda 21. It has been 10years passed after Rio declaration, and water crisis Is getting more serious than before. Fairly, right for using water resources was given to every life as the public resources. But at the last world water forum, water was commercialized, and regulated as the basic requirement not basic right. Therefore, we could use the water according to the logic of supply and demand at the market, and with money. Furthermore, construction of the big dam which was build to solve the problem of the lack of water became one of problems for water control. Korea is keeping consistent policy such as providing water by the building of dam. Control of the water demand is the most basic and effective policy for the preservation of water resources. If we change the policy such as the construction of the dam, we should put the management of the water demand in the center with the reliable philosophy. United management of the river basin has to be made with the security of water, improvement of water quality, and protection of the ecological side each other. Management of water basin also has to be completed to solve the trouble caused by using water conflict people who live up and down stream. To maintain the good quality of water, management of water basin is necessary. Also, bottom line of the united management of water basin is voluntary involvement of every citizens and local community. We suggest to preserve the origin of river and the upper at the ecological side. It is worth it to preserve.

  • PDF

An Integrated Method for Water Environment Management Using Web Based Model and GIS (웹 기반의 모형과 지리정보시스템을 이용한 통합적 수환경관리기법)

  • Mun, Hyun-Saing;Kim, Joon Hyun;Kim, Chong-Chaul
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.235-243
    • /
    • 2001
  • Since the middle of 1990s, in Korea a few researches on the optimal management technologies combining numerical model and GIS for the management of water environment in drinking watershed area and reservoir such as Paldang Lake have been carried out. In this study, the integrated water environment management system was been suggested to efficiently reflect the public awareness of the environment by integrating the web based distributed data collection system, GIS, public hearing system and water quality model. As all the components of the system have been developed using the World Wide Web and all data have been collected from the relevant agencies through the Internet, the water quality model could be implemented on the web directly. In consequence, the environmental geographic information in Paldang Lake could be acquired and analyzed through the Internet. The system can rapidly respond to the public right to know on environment, so the public will willingly participate in the governmental projects on environment. To verify the usability of the developed system, it has been applied to Paldang Lake. Especially when the web based model has been used, users can easily and confidentially get the prediction results by applying the minimum number of parameters for the water quality model. This model will provide clearness and scientific bases in the process of water quality prediction for the sensitive sites where there are critical conflicts between the residents and the developers. In this study, rapid water environment management technique without spatial and time limit has been suggested, which can contribute to the efforts on the government and the public participation.

  • PDF

An Analysis of the Water Quality Improvement Measures and Evaluation of Wonju Stream (원주천 수질개선 방안 및 개선효과 평가)

  • Kum, Donghyuk;Shin, Minhwan;Yu, Nayeong;Lee, Seolo;Kim, Dongjin;Sung, Younsoo;Lee, Sang Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • Recently, the deterioration of water quality in Wonju stream has been reported due to the increase in diverse pollution sources along with community development and urbanization. Various types of attempts with a huge budget were made for better water quality so far, but its effectiveness is still doubted. In order to establish site-oriented measures for water quality improvement, the topographic and hydrologic factors were evaluated based on site inspection and survey. As the major streams merged into the Wonju stream, the Hwa and Heungyang streams were found to have higher pollution loads and contributions compared to other streams due to the scattered livestock farms and industries, and vulnerable land use. Notably, the discharge water from the Wonju Public Sewage Treatment Plant had the highest level of pollution load, impacting on the water quality of Wonju Stream. According to the SWAT model as water quality measures, the improvement effect of water quality in this treatment plant can be reached to the reductions in BOD 11.06%, T-N 23.56%, T-P 10.60% when the proper managements applied, whereas the improvement of water quality would be 3.89%, 1.23%, and 3.32% for BOD, T-N, T-P, respectively, for the industries. The reduction of the livestock industry was generally very high as a pollution source, but it was not much higher at the end of Wonju Stream than other measures. These results recommended that the water q uality improvement measures should be designated for each upper-middle-lower section in Wonju stream.

Development of Water Quality Modeling in the United States

  • Ambrose, Robert B;Wool, Tim A;Barnwell, Thomas O.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.200-210
    • /
    • 2009
  • The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.

The Study on the Integrated Monitoring of Water Quantity and Quality Data (수량 및 수질관측 통합연계 운영 연구)

  • Yi, Jae-Eung;Kim, Mun-Mo;Park, Sung-Je
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.115-123
    • /
    • 2009
  • Integrated information to water quantity and quality is essential for planning water resources management as well as operating water-related infrastructures. Because data collection process including monitoring and maintenance is separated in different governmental agencies in Korea, integrating quantity and quality may provide effective and better management implementation. In this study, a number of suggestions regarding integration of water monitoring were concluded in terms of technological, legal and institutional implications. First, it is necessary to discuss national water monitoring plan, national water information management plan, agreement of standard terms of monitoring between ministries, and to revise the law(river law and water quality management law). Present stations for water monitoring should be used for both of quantity and quality monitoring. If station is newly installed or relocated, it is better that one single agency maintain monitoring frequency and data management as well. In addition, a monitoring protocol need to be agreed by each of parties. In order to develop integrated monitoring system, quality assurance of the collected data should be properly maintained. Since many purposes haven been concerned using of data analysis and assessment so far, it may not be easy to integrate water quantity and quality monitoring in a short period. However, the alternatives including enhancing institutional regulations and programs, advanced technology may promote an efficient integrated water monitoring.

Application to the Water and Sediment Model for the Management of Water Quality in Eutrophicated Seto Inland Sea, Japan (부영양화된 뢰호내해의 수질관리를 위한 수ㆍ저질예측모델의 적용)

  • Lee In Cheol;Chang Sun-duck;Kim Jong Kyu;Ukita Masao
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.96-108
    • /
    • 1998
  • The management of water quality and fishery resources with a major environmental problem in eutrophic coastal sea is studied. The numerical experiments using the water-sediment quality model (WSQM) were carried out for the management of water quality at the Seto Inland Sea in Japan. The results of long-term water quality simulation showed responses of seawater quality to input loads to vary in different localities. A formula roughly forecasting water qualify to estimate the effect of loading abatement was proposed. The simulation for the improvement of seawater quality showed the abatements of nutrient loads such as total phosphorus (TP) and total nitrogen (TN) as well as organic loads such as chemical oxygen demand (COD) to be peformed in the eastern Seto Inland Sea from Bisan Seto to Osaka Bay. On the other hand, it is indicated that the increase of loading leads to the increase of primary production. while not straightly to the increase of fish production for the catch of fisheries.

  • PDF