• Title/Summary/Keyword: water quality index

Search Result 876, Processing Time 0.037 seconds

Application of SBR Process to Treat Pickling Wastewater including the High Nitrate and Ca+2 (고농도 질산성질소와 Ca+2을 함유한 산세폐수의 효과적인 처리를 위한 SBR 공정의 적용)

  • Kim, Seung-jun;Choi, Yong-su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This research presents results from laboratory and pilot-scale experiments to remove high-nitrate in pickling wastewater using the sequencing batch reactor (SBR) as a biological method. During the experimental periods, the influent concentrations of NOx-N and $Ca^{+2}$ were analyzed to be 350-1,600 and 700-800 mg/L, respectively. In order to provide carbon source for denitrification, methanol has been added in proportion to the influent nitrate loading. The mean concentrations of MLSS and MLVSS, the fraction of volatile solids in sludge and the sludge volume index were measured to be 27 g/L, 5 g/L, 18.5% and 7.5, respectively. The solid retention time was kept in the range of 18 to 22 days, specific denitrification rate ($U_{dn}$) was $0.301g{NO_3}^--N/gVSS/day$. The oxidized nitrogen concentration of effluent ranged 2-34 mg/L with an average of 5.2 mg/L, the overall reduction in total nitrogen was more than 99.2%. In order to treat the pickling wastewater including the high concentration of nitrate and $Ca^{+2}$, the continuous flow process is not suitable because the specific gravity of the sludge is considerably increased by $Ca^{+2}$, thus the SBR process is shown to be very effective to treat the pickling wastewater.

Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir (기후변화가 주암호 수온성층구조에 미치는 영향 예측)

  • Yoon, Sung Wan;Park, Gwan Yeong;Chung, Se Woong;Kang, Boo Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.491-502
    • /
    • 2014
  • As meteorology is the driving force for lake thermodynamics and mixing processes, the effects of climate change on the physical limnology and associated ecosystem are emerging issues. The potential impacts of climate change on the physical features of a reservoir include the heat budget and thermodynamic balance across the air-water interface, formation and stability of the thermal stratification, and the timing of turn over. In addition, the changed physical processes may result in alteration of materials and energy flow because the biogeochemical processes of a stratified waterbody is strongly associated with the thermal stability. In this study, a novel modeling framework that consists of an artificial neural network (ANN), a watershed model (SWAT), a reservoir operation model(HEC-ResSim) and a hydrodynamic and water quality model (CE-QUAL-W2) is developed for projecting the effects of climate change on the reservoir water temperature and thermal stability. The results showed that increasing air temperature will cause higher epilimnion temperatures, earlier and more persistent thermal stratification, and increased thermal stability in the future. The Schmidt stability index used to evaluate the stratification strength showed tendency to increase, implying that the climate change may have considerable impacts on the water quality and ecosystem through changing the vertical mixing characteristics of the reservoir.

Ecological Health Diagnosis of Sumjin River using Fish Model Metric, Physical Habitat Parameters, and Water Quality Characteristics (어류모델 메트릭, 물리적 서식지 변수 및 수질특성 분석에 의한 섬진강의 생태 건강성 진단)

  • Lee, Eui-Haeng;Choi, Ji-Woong;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2007
  • This study was to evaluate ecological health of Sumjin River during April${\sim}$June 2006. The ecological health assessments was based on the Index of Biological Integrity (IBI), Qualitative Babitat Evaluation Index (QHEI), and water chemistry. For the study, the models of IBI and QHEI were modified as 10 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of $2002{\sim}2005$, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. In Sumjin River, values of IBI averaged 33 (n= 12), which is judged as a "Fair${\sim}$Good" condition after the criteria of Barbour at al. (1999). There was a distinct spatial variation. Mean IBI score at Site 5 was estimated as 40, indicating a "Good" condition whereas, the mean at Site 3 was 23, indicating a "Poor${\sim}$Fair" condition. Habitat analysis showed that QHEI values in the river averaged 109 (n=6), indicating a "Marginal" condition after the criteria of Harbour et al. (1999). Values of BOD and COD averaged 1.3 mg $L^{-1}$ (scope: $0.9{\sim}1.8$ mg $L^{-1}$) and 3.3 mg $L^{-1}$ (scope: $2.8{\sim}4.0$ mg $L^{-1}$), respectively during the study. It was evident that chemical pollutions by organic matter were minor in the river. Total nitrogen (TN) and total phosphorus (TP) averaged 2.5 mg $L^{-1}$ and 0.067 mg $L^{-1}$, respectively, and the nutrients did not show large longitudinal gradients between the upper and lower reach. Overall, dataset of IBI, QHEI, and water chemistry suggest that river health has been well maintained, compared to other major watersheds in Korea and should be protected from habitat disturbance and chemical pollutions.

Development of Information System based on GIS for Analyzing Basin-Wide Pollutant Washoff (유역오염원 수질거동해석을 위한 GIS기반 정보시스템 개발)

  • Park, Dae-Hee;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.34-44
    • /
    • 2006
  • Simulation models allow researchers to model large hydrological catchment for comprehensive management of the water resources and explication of the diffuse pollution processes, such as land-use changes by development plan of the region. Recently, there have been reported many researches that examine water body quality using Geographic Information System (GIS) and dynamic watershed models such as AGNPS, HSPF, SWAT that necessitate handling large amounts of data. The aim of this study is to develop a watershed based water quality estimation system for the impact assessment on stream water quality. KBASIN-HSPF, proposed in this study, provides easy data compiling for HSPF by facilitating the setup and simulation process. It also assists the spatial interpretation of point and non-point pollutant information and thiessen rainfall creation and pre and post processing for large environmental data An integration methodology of GIS and water quality model for the preprocessing geo-morphologic data was designed by coupling the data model KBASIN-HSPF interface comprises four modules: registration and modification of basic environmental information, watershed delineation generator, watershed geo-morphologic index calculator and model input file processor. KBASIN-HSPF was applied to simulate the water quality impact by variation of subbasin pollution discharge structure.

  • PDF

Zooplankton Community as an Indicator for Environmental Assessment of Aquatic Ecosystem: Application of Rotifer Functional Groups for Evaluating Water Quality in Eutrophic Reservoirs (동물플랑크톤 군집의 수생태계 환경 평가 지표 활용: 부영양화 저수지 수질 평가를 위한 윤충류 기능성 그룹의 적용)

  • Oh, Hye-Ji;Chang, Kwang-Hyeon;Seo, Dong-Il;Nam, Gui-Sook;Lee, Eui-Haeng;Jeong, Hyun-Gi;Yoon, Ju-Duk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.404-417
    • /
    • 2017
  • In this study, we analyzed response patterns of rotifer community to eutrophic state, and estimated the applicability of rotifer community as an environmental indicator for highly eutrophicated reservoirs. In order to evaluate the relationships among spatial and temporal distributions and the water quality of rotifer community, we selected the Jundae Reservoir and Chodae Reservoir in Chungcheongnam-do, Korea, which are geographically adjacent but have different water quality, particularly in their eutrophic states. For the analyses on their correlations, monthly survey of water quality and rotifer community, was conducted from April to November 2013 in both reservoirs. The rotifer community was divided into different compositions of functional groups as well as species. Functional groups were classified according to the structure and shape of trophi which can represent feeding behavior of rotifer genus. To reflect ecological characteristics of species, body size and habitat preferences were also considered. Species-based composition did not show a consistent tendency with water quality parameters related with eutrophication. On the contrary, functional group composition showed relatively clear group-specific patterns, increasing or decreasing according to the parameters. The results suggest the possible application of rotifer functional group composition as an indicatorforthe lentic systems, especially hyper-eutrophicated reservoirs. The present study can suggest the applicability based on the field observations from the limited time scale and sites, and further studies on feeding behavior of the rotifer functional group and its interactions with environmental variables are necessary for the further application.

Determination of the Suitability Evaluation Indices of a Riverside-Reservoir Space Planning (천변저류지 공간계획의 적합성 평가지표 선정)

  • Jang, Dong-Su;Baek, Mi-Na
    • KIEAE Journal
    • /
    • v.9 no.3
    • /
    • pp.21-27
    • /
    • 2009
  • The goal of this paper is to determine the suitability evaluation indices of a riverside reservoir space planning by classifying major indicators and calculating AHP(Analytical Hierarchy Process) based weights of them. The major indicators were set up based on literature review and questionnaire survey to experts. Four indicator categories were developed: location, environment, resource availability and economical efficiency. And they were divided into 12 sub-categories for calculating AHP-based weights. First, as for the major indicator categories, the calculation shows that the weighted index of environment is the most important at 0.458, followed by location at 0.128, economical efficiency at 0.170 and resource availability at 0.154. This suggests that environment is getting more public attention and the reservoir is regarded as a facility that is connected to a river. Those weight values were considered in calculating final weights for each of 12 sub-categories. Among them water quality and ecological environment take top ranks at 0.190 and 0.186, respectively. The lower ranks include access 0.112, resource availability of site 0.082, tourism resource 0.078, users 0.076, available land 0.052, area of site 0.031, shape of site and deterioration level 0.030 and percentage of private land 0.030 - which represents general considerations in other space planning. The difference of the top rank (water quality, 0.190) and the last one (percentage of private land, 0.027) is 0.163. The above result shows that users regard environmental aspect and resource availability more important than easiness of construction.

A Comparison of Neighborhood Definition Methods for Spatial Autocorrelation (공간자기상관 산출을 위한 인접성 정의 방법 비교)

  • Park, Jae-Moon;Hwang, Do-Hyun;Yoon, Hong-Joo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.3
    • /
    • pp.477-485
    • /
    • 2011
  • For the identifying of spatial distribution pattern, Moran's Index(I) which has the range of values from -1 to +1 is common method for the spatial autocorrelation measurement. When I is close to 1, all neighboring features have close to the same value, indicating clustered pattern. Conversely, if the spatial pattern is dispersed, I is close to -1. And I closing to 0 means spatially random pattern. However, this index equation is influenced by how defining the neighboring features for target feature. To compare and understand the difference of neighborhood definition methods, fixed distance neighboring method and Gabriel Network method were used for I. In this study, these two methods were applied to two marine environments with water quality data. One is Gwangyang Bay which has complex geometric coastal structure located in South Sea of Korea. Another is Uljin area adjacent to open sea located in east coast of Korea. The distances between water quality observed locations were relatively regular in Gwangyang Bay, however, irregular in Uljin area. And for the fixed distance method popular Arc GIS tool was used, but, for the Gabriel Network, Visual Basic program was developed to produce Gabriel Network and calculate Moran's I and its Z-score automatically. According to this experimental results, different spatial pattern was showed differently for some data with using of neighboring definition methods. Therefore there is need to choose neighboring definition method carefully for spatial pattern analysis.

Effect of Vitamin E on Production Performance and Egg Quality Traits in Indian Native Kadaknath Hen

  • Biswas, Avishek;Mohan, J.;Sastry, K.V.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.396-400
    • /
    • 2010
  • This experiment investigated the effects of increasing dietary vitamin E (VE) on production performance and egg quality traits of Indian reared Kadaknath (KN) hens. One hundred and eighty (180), day old female KN chicks were randomly distributed to three dietary treatment groups for a period of 30 weeks. Each treatment comprised three replicates, each containing 20 chicks. The basal diet ($T_1$) contained 15 IU VE/kg and the two experimental diets were supplemented with 150 and 300 IU VE/kg (diets $T_2$ and $T_3$, respectively). DL-${\alpha}$-tocopherol acetate was used as the source of VE. All chicks were provided feed and water ad libitum. Production performance in terms of body weight, egg weight and hatchability did not differ significantly (p>0.05), whereas sexual maturity, egg production and fertility differed significantly (p<0.05) in $T_2$ compared to the other two groups. Egg quality traits in terms of albumin weight, yolk weight, shell thickness, albumin index and yolk index did not differ significantly (p>0.05), whereas the Haugh unit score was significantly higher (p<0.05) in $T_2$ than the control ($T_1$) and high dose treatment group ($T_3$). From this study, it can be concluded that lower levels of dietary VE may be beneficial for production performance and Haugh unit score but have no effect on egg quality traits in Indian reared KN hens.

Temporal and Spatial Variations of Water Quality in the Cheonsu Bay of Yellow Sea, Korea (천수만 수질환경의 시·공간적 변동특성)

  • Park, Soung-Yun;Heo, Seung;Yu, Jun;Hwang, Un-Ki;Park, Jong-Su;Lee, Sung-Min;Kim, Chang-Mi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.439-458
    • /
    • 2013
  • Temporal and spatial variations of water quality were investigated in the Cheonsu Bay of Yellow Sea, Korea from 2010 to 2011. Water samples were collected at 16 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids (SS), chemical oxygen demand (COD), dissolved oxygen (DO), Chlorophyll a and nutrients. Spatial distribution patterns of all survey items were not clear among stations but the bimonthly variations were distinct except the bottom water of the suspended solids. The trend analysis by principal component analysis (PCA) during 2 years revealed the significant variations in water quality in the study area. Spatial water qualities were discriminated into 3 clusters by PCA; station cluster in the surface water 1, 2~11, and 12~16, the bottom water 1, 2~7, and 8~16. Annual bimonthly water qualities were clearly discriminated into 3 clusters by PCA. But tend of cluster in the surface and bottom water was difference, period most of the research was low in nutrient. Ecology-based water quality criteria was a good level of grade II. Bimonthly results are shown as III grade(normal) at June and August, II grade(good) at October and December and I grade for February and April. Water quality was showed by the input of fresh water same as those of Kyoungin coastal area, Asan coastal area, Gunsan coastal and Mokpo coastal area in the Cheonsu.

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.