• Title/Summary/Keyword: water quality degradation

Search Result 226, Processing Time 0.025 seconds

Techniques of Water Quality Improvement by Using Ozone Generation System (오존발생시스템을 이용한 하천수질 개선기법)

  • Kim, Min-Young;Ryu, Jae-Wook;Lee, Seung-Yun;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2122-2126
    • /
    • 2008
  • With the degradation of water quality and, at the same time increased water usage, the sources of high quality, for examples, river/stream, municipal reservoir, wells, artisan and surface water, are diminishing. Therefore, the importance of water quality has been emphasized over the years through publications and various literature sources. Even though considerable research has resulted in significant strides for providing interpretive information and mitigation strategies for improvement of waters, the quality of which is still questionable. This study aims to propose a completely independent self-contained system for purifying waters, solar-powered ozone generator. It is a semi-permanent and cost effective environmental solution. Functions of ozone treatment are: 1) to maintain oxidative flexibility, 2) remove harmful chemicals, wastes, and other substances, and 3) prevent epizootic microbial outbreaks. Recent advances in technology have allowed the development of the practical, self-contained and independent solar powered device. Solar electrical producing panels that charge batteries are the key to using these systems anywhere electrical power is not available. This paper invites the readers to examine the problem and consider the viable, proven solution the solar powered ozone purifying system. This paper also introduces basic concept and background of solar powered ozone generators and examine its feasibility for improving water quality in rivers and streams.

  • PDF

Removal of Bisphenol-A using Rotating Photocatalytic Oxidation Drum Reactor (RPODR)

  • Son, Hee-Jong;Jung, Chul-Woo;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.197-202
    • /
    • 2008
  • This study evaluated the photocatalytic oxidation of BPA using the RPOD reactor under various conditions. This study found that the RPOD was effective for BPA degradation. It could reduce 1 mg/L of BPA by half within 5 min under the optimum conditions. According to the study results, $TiO_2$ coating was important for the BPA oxidation. As the coating thickness increased, the removal efficiency improved. The light source, the light intensity and the drum rotating speed were important for the oxidation. The UV light was more effective for the BPA degradation than the visible light. The removal efficiency improved with increasing intensity. As the drum speed increased, the removal efficiency improved. The maximum speed was 240 rpm in this study. Addition of air and nitrogen was not beneficial for the BPA degradation in this study probably due to enough oxygen in the water.

Relationships among a Habitat-Riparian Indexing System (HIS), Water Quality, and Land Coverage: a Case Study in the Main Channel of the Yangsan Stream (South Korea)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Hong, Dong-Kyun;Choi, Jong-Yun;Yoon, Ju-Duk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.502-509
    • /
    • 2009
  • In this study a total of 27 stream sites, at 1 km intervals, were monitored for simple physicochemical water characteristics, land coverage patterns, and stream environment characteristics using the Habitat-riparian Indexing System (HIS), in the Yangsan Stream. The HIS has been tested in previous research, resulting in some identification of advantages in the application to the stream ecosystems data. Even though reliable stream environment characterization was possible using HIS, there was no information about the application of this tool to present continuity of environmental changes in stream systems. Also the necessity was raised to compare the results of HIS application with land coverage information in order to provide useful information in management strategy development. The monitoring results of this study showed that changes of environmental degradation were well represented by HIS. Especially, stream environment degradation due to construction was relatively well reflected in the HIS monitoring results, and the main causality of Yangsan Stream degradation was expansion of the urbanized area. In addition, there were significant relationships between the HIS scores and land coverage information. Therefore, it is necessary to prepare appropriate options in controlling or managing the expansion of the industrialized areas in this stream basin in order to improve the stream environment. For this purpose, ensemble utilization of HIS results, water quality, and geographical information, resulting in integration with remote sensing processes can be possible.

Effect of Water Quality of Artificial Sewage on E. coli Disinfection Using Electrolysis Process (전기분해 공정을 이용한 E. coli 소독에 미치는 인공하수 수질의 영향)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1115-1124
    • /
    • 2011
  • There is an increasing incidence in health problems related to environmental issues that originate from inadequate treatment of sewage. This has compelled scientists to engage in innovative technologies to achieve a effective disinfection process. Electrolysis has emerged as one of the more feasible alternatives to conventional disinfection process. The objectives of the present paper were to investigate the effect of chemical characteristics on oxidant formation and Escherichia coli (E. coli) disinfection in synthetic sewage effluents. The influence of parameters such as COD, SS, T-N and T-P were investigated using laboratory scale batch reactor. The results showed that the higher COD, T-N and T-P concentration, the lower N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) degradation and E. coli disinfection was observed. The order of effect of RNO degradation and E. coli disinfection was T-P > COD > T-N > SS. When 4 parameter of water quality were worked simultaneously, oxidants formation and disinfection was decreased with increase of the concentration of sewage. To increase of the disinfection performance, the increase of disinfection time or electric power was need.

Effects of Adding UV and H2O2 on the Degradation of Pharmaceuticals and Personal Care Products during O3 Treatment

  • Kim, Il-Ho;Kim, Seog-Ku;Lee, Hyun-Dong;Tanaka, Hiroaki
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.131-136
    • /
    • 2011
  • The degradation of 30 pharmaceuticals and personal care products (PPCPs) subjected to $O_3$, $O_3$/UV, and $O_3/H_2O_2$ treatments were investigated using semi-batch tests and evaluated by their pseudo-first-order rate constants. The additional application of UV or $H_2O_2$ during $O_3$ treatment significantly improved the degradation rate of most of the PPCPs. At the same $O_3$ feed rate, $O_3$/UV treatment exhibited much higher PPCP degradation efficiency than that of $O_3$ treatment. This was probably due to degradation of the PPCPs by $O_3$, direct UV photodegradation, and OH radicals that formed from the photodegradation of $O_3$ during $O_3$/UV treatment. PPCP degradation by $O_3$ was also promoted by adding $H_2O_2$ during the $O_3$ treatment. However, when the initial $H_2O_2$ concentration was high during $O_3$ treatment, OH radicals were likely to be scavenged by excess $H_2O_2$, leading to low PPCP degradation. Therefore, it is important to determine the appropriate $H_2O_2$ dosage during $O_3$ treatment to improve PPCP degradation when adding $H_2O_2$ during $O_3$ treatment.

Evaluation of the Effect of Bank Protection Concrete Blocks on Water and Soil Environmental Impact (하천 호안 콘크리트 블록이 수질 및 토양환경에 미치는 영향평가)

  • Yoo Jae Hwan;Park Youn Shik;Shin Hyun Oh;Lee Goen Hee;Lee Bo Hyun;Cha Sang-Sun;Park Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • The study is to evaluate the effect of bank protection concrete block products to streams and soils. The effect on three types of bank protection concrete blocks was evaluated.. The first type was manufactured using fly ash, and the second and third type products used fine blast furnace slag powder. The laboratory and field Experiments test results showed the pHs of 9 or less. Also, any heavy metals were not detected in the heavy metal leaching tests. Although some iron (Fe) was partially detected, it still met the water quality standards. In addition, heavy metal was detected from all blocks by the US drinking water evaluation standards method. An on-site water quality and soil contamination tests were performed at the places that the blocks were implemented in practice. The test results showed that the application of the bank protection concrete block product did not lead to the water and soil quality degradation. Therefore, it was found that the hardened bank protection concrete block product did not elute harmful substances such as heavy metals that affect water and soil quality degradation.

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

Photocatalytic Degradation of Algae and its By-product using Rotating Photocatalytic Oxidation Disk Reactor

  • Son, Hee-Jong;Jung, Chul-Woo;Bae, Sang-Dae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.170-173
    • /
    • 2009
  • This study examined the special technique of photocatalytic degradation (RPODisk) for removal of taste and odor causing materials, algae, and algal toxin. The RPODisk was effective for removal of these troublesome contaminants. It outperformed the fixed media and the UV irradiation for geosmin removal. The RPODisk performance was comparable to the combination of the UV irradiation with TiO2. The RPODisk performance was affected by the rotating speed. The faster the speed was, the better the performance. The RPODisk was also effective for removal of algae and algal toxin. The algal activity reduced by 80% after 30 mins of the treatment. More toxic microcystin (MC)-LR was more difficult to remove than MC-RR. The times for 50% removal were 23.7 mins for MC-LR and 14.1 mins for MC-RR. Almost 100 mins of the contact time was required to completely remove MC-LR at the rotating speed of 260 rpm.

Groundwater Management Pradigm Shift and Policy Directions for Integrated Water Management in Korea (통합 물관리를 위한 우리나라 지하수 관리 패러다임 전환과 정책방향)

  • Hyun, Yunjung;Han, Hye Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.176-185
    • /
    • 2021
  • This paper aims to develop a new paradigm for groundwater management which is compatible with integrated water management policies in Korea. Three key roles of groundwater are defined for addressing water cycle distortion, high water stress, water quality degradation, aquatic ecosystems deterioration, and water-related hazards. Firstly, groundwater plays an important role in contributing soundness of water cycle as a component of water cycle. Secondly, it is a local water resource to ensure water supply sustainability. Thirdly, groundwater is an essential water resource for drought and emergencies. In order to support the groundwater roles, we propose a paradigm shift for groundwater management and policy directions towards integrated water management. The new paradigm consists of managements for sound water cycle on a watershed scale and groundwater environment(quantity, quality, and groundwater dependent ecosystems) managements for both human and nature. A prospective management also constitutes the new paradigm. In addition, this paper proposes four policy directions in groundwater management. The policies emphasize the integrated management of groundwater and surface water, management of groundwater environment(quantity, quality, and groundwater dependent ecosystems), management of groundwater uses for water sustainability and security, and enhancement of groundwater publicity.

Effect of Storage Conditions on Quality Stability of Dried Laver(Porphyra tenera) (건조김의 품질 안정성에 미치는 저장 조건의 영향)

  • 조길석
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.32-36
    • /
    • 2003
  • Quality stability of the dried layer Porphyra tenera depending on various light sources, water activities, packaging materials and storage temperatures were investigated by peroxide value and chlorophyll degradation. Major fatty acids of dried layer were 45.7% eicosapentaenoic acid and 13.6% palmitic acid. Quality stability was increased in order of darkness, incandescent and fluorescent increased sharply with the decrease of water activity and temperature, and also improved by the packaging material with strong barriers of water vapor, oxygen and light.