• 제목/요약/키워드: water properties

검색결과 10,661건 처리시간 0.036초

염수환경을 고려한 섬유강화 복합재의 내구성 평가 (Durability of Fiber Reinforced Composites under Salt Water Environments)

  • 윤성호;황영은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.391-396
    • /
    • 2005
  • Salt water spray test and salt water immersion test were experimentally conducted in order to investigate the durability of fiber reinforced composites under salt water environment. The specimens were made of glass fabric reinforcement and phenolic resin. Mechanical test was performed to obtain mechanical properties such as tensile properties, flexural properties, and shear properties by varying with exposure times. Also dynamic mechanical test and FTIR were conducted to investigate a change in chemical structure as well as thermal analysis properties such as storage shear modulus, loss shear moduls, and tan ${\delta}$. According to the results, salt water environment has effected on mechanical properties and thermal analysis properties and especially the durability of glass fabric/phenolic composites were severely affected on salt water immersion environment rather than salt water spray environment.

  • PDF

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

내수성 및 기계적 물성이 향상된 열처리된 폴리비닐알코올/셀룰로오스 나노결정 필름 (Heat-Treated Polyvinyl Alcohol/Cellulose Nanocrystal Film with Improved Mechanical Properties and Water Resistance)

  • ;이봉기
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, the water resistance and mechanical properties of heat-treated polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) films were investigated. PVA is the most commonly used synthetic biodegradable polymers owing to its excellent properties. However, the water/moisture sensitivity and relatively poor mechanical properties of PVA limits its applications. Although heat treatment is a conventionally used method to improve the mechanical strength and water resistance of PVA, the effectiveness of this method is insufficient. Therefore, CNC was used to further improve the mechanical properties and water resistance of the heat-treated PVA film. PVA/CNC nanocomposites containing CNC contents of 0, 1, 3, 5, and 10 wt% were fabricated using solvent casting and subsequent heat treatment. The mechanical properties and water resistance of PVA/CNC films were significantly improved. The tensile strength and wet strength of the PVA/CNC film with a CNC content of 5 wt% (PVA/CNC 5%) were 184.5% and 136.0% higher than those of the untreated PVA, respectively. In addition, the water absorption and solubility of PVA/CNC 5% were 56.6% and 68.2% lower than those of the untreated PVA.

시멘트 몰탈의 방수성능에 미치는 제반 영향인자에 관한 연구 (A Study on Various Effecting Factors on Water Proofing Properties of Cement Mortar)

  • 신도철;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.100-105
    • /
    • 1995
  • The aim of this study is to developed water proofing properties of cement mortar this study the effect of mix proportion on the basic characteristics of cement mortar was investigated. Also water absorption and permeability properties of mortar using several admixtures were tested. from this results, Physical properties of mortar is improved by using the sand witch has a broad particle size distribution. Also the sililca alumina powder is effective for decreasing the water permeability of mortar and zinc stearate is in creasing the water repellence property.

  • PDF

염수환경에 노출된 철도차량용 탄소섬유/에폭시 복합재의 내구성 평가 (Durability of Carbon/Epoxy Composites for Train Carbody under Salt Water Environment)

  • 황영은;윤성호;김정석;한성호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.852-858
    • /
    • 2007
  • The durability of carbon/epoxy composites under salt water environment was investigated through salt water spray tester. Salt water environment was obtained through salt spray and salt immersion. 5% NaCl solution was used for salt water as natural salt water. Mechanical test was performed to obtain tensile properties, flexural properties, and shear properties of carbon/epoxy composite over 12 months under salt water environment. Dynamic mechanical analyzer was used to investigate thermal analysis properties such storage modulus, loss modulus, and tan ${\delta}$. Also FT/IR test was conducted to investigate a change in chemical structure. According to the results, mechanical properties were found to be slowly degraded as a function of exposure times. Regarding to thermal analysis properties, storage modulus was insensitive to exposure times, but loss modulus was shown to be slightly decreased. Although the shape and location of peak in FT/IR were not much changed, the intensity of peak in FT/IR was affected on exposure times. We also found that salt water immersion was more severe to the durability of carbon/epoxy composite rather than salt water spray.

  • PDF

부직포 충전재의 수분투파성 (Water Vapor Transport Properties of Nonwoven Batting Materials)

  • 김희숙;나미희;김은애
    • 한국의류학회지
    • /
    • 제22권1호
    • /
    • pp.72-79
    • /
    • 1998
  • Journal of the Korean Society of Clothing and Textiles Vol. 22, No. 1 (1998) p. 72∼79 The purpose of this study was to investigate the effects of geometrical structure and fiber type on the water vapor transport properties of nonwoven batting materials. Two types of fiber were used such as polyester and wool. Correlation between physical properties of nonwovens and water vapor transport rate was analyzed by Pearson Correlation. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltots chloride method respectively. The results were as follows: 1) In geometrical structure, thickness of nonwovens was effected on absorption and evaporation rate and air permeability was more influencing factor on water vapor transport rate than porosity. There were no decreasing of water vapor transport rate in hydrophilic fiber at high relative humudity. 2) The hydrophilicity of fiber affected steady and dynamic state water vapor permeabilities and wool nonwoven showed higher water vapor transport rate than polyester at high relative humidity. 3) Thickness showed higher correlation coefficient with water vapor transport rate than other physical properties of nonwovens.

  • PDF

3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process)

  • 박현태;권의표;임익태
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

파이넥스 수쇄 슬래그 잔골재의 혼합률에 따른 콘크리트의 품질특성 평가 (Evaluation of Quality Properties of Concrete according to Mixing Proportion of Finex Water Granulated Slag Fine Aggregate)

  • 최연왕;조봉석;오성록;박만석
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.145-151
    • /
    • 2014
  • 본 연구에서는 국내에서 발생되고 있는 파이넥스 수쇄 슬래그를 콘크리트용 잔골재로써 활용하기 위한 연구의 일환으로 파이넥스 수쇄 슬래그 잔골재의 기초물성을 평가하였으며, 파이넥스 수쇄 슬래그 잔골재를 사용한 굳지않은 콘크리트의 특성, 경화된 콘크리트의 역학적 특성을 보통강도 및 고강도 영역에서 강사와 비교 평가하여 콘크리트용 잔골재로써 사용성 검토를 수행하였다. 실험결과, 파이넥스 수쇄 슬래그를 사용한 콘크리트와 강사를 사용한 콘크리트의 품질특성은 동등수준인 것으로 나타났다.

Thermal properties of latent heat storage microcapsule-water slurry

  • Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.807-812
    • /
    • 2015
  • A microcapsule water slurry is a latent heat-storage material having a low melting point. In this study, the thermal properties of a microcapsule water slurry are measured. The physical properties of the test microcapsule water slurry, i.e., thermal conductivity, specific heat, latent heat, and density, are measured, and the results are discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). It is clarified that Eucken's equation can be applied to the estimation of the thermal conductivity of the microcapsule water slurry. Useful correlation equations of the thermal properties of the microcapsule water slurry are proposed in terms of the temperature and concentration ratio of the microcapsule water slurry constituents.

Water Uptake and Tensile Properties of Plasma Treated Abaca Fiber Reinforced Epoxy Composite

  • Paglicawan, Marissa A.;Basilia, Blessie A.;Kim, Byung Sun
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.165-169
    • /
    • 2013
  • This work presents the tensile properties and water uptake behavior of plasma treated abaca fibers reinforced epoxy composites. The composites were prepared by vacuum assisted resin transfer molding. The effects of treatment on tensile properties and sorption characteristics of abaca fiber composites in distilled water and salt solution at room temperature were investigated. The tensile strength of the composites increased with plasma treatment. With plasma treatment, an improvement of 92.9% was obtained in 2.5 min exposure time in plasma. This is attributed to high fiber-matrix compatibility. Less improvement on tensile properties of hybrid treatment of sodium hydroxide and plasma was obtained. However, both treatments reduced overall water uptake in distilled water and salt solution. Hydrophilicity of the fibers decreased upon plasma and sodium hydroxide treatment, which decreases water uptake.