• Title/Summary/Keyword: water pressure in tunnel

Search Result 238, Processing Time 0.03 seconds

Analytical solution for steady seepage and groundwater inflow into an underwater tunnel

  • Zou, Jin-feng;Wei, An;Liang, Li
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • Solutions of the water pressure and groundwater inflow distribution along the tunnel perimeter in a half-infinite aquifer were investigated considering the conditions of the constant head and constant water pressure. It is assumed that the circular tunnel is buried in a fully saturated, homogeneous, isotropic and half-infinite space. Coordinate transformation technique was adopted, the problem of solving the control equations of water pressure in the Cartesian coordinate was transformed to that in the bipolar coordinate system, which can significantly simplify the derivation procedure of the water pressure and inflow distribution. The validation results show the accuracy and advantage of the proposed approach.

Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation

  • Li, S.C.;Wu, J.;Xu, Z.H.;Li, L.P.;Huang, X.;Xue, Y.G.;Wang, Z.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.471-526
    • /
    • 2016
  • In order to investigate water flow characteristics after inrushing in process of karst tunnel excavation, numerical simulations for five case studies of water inrush from the tunnel floor are carried out by using the FLUENT software on the background of Qiyueshan high risk karst tunnel. Firstly, the velocity-distance curves and pressure-distance curves are drawn by selecting a series of probing lines in a plane. Then, the variation characteristics of velocity and pressure are analyzed and the respective optimized escape routes are made. Finally, water flow characteristics after inrushing from the tunnel floor are discussed and summarized by comparing case studies under the conditions of different water-inrush positions and excavation situations. The results show that: (1) Tunnel constructors should first move to the tunnel side wall and then escape quickly when water inrush happens. (2) Tunnel constructors must not stay at the intersection area of the cross passage and tunnels when escaping. (3) When water inrush from floor happens in the left tunnel, if tunnel constructors meet the cross passage during escaping, they should pass through it rapidly, turn to the right tunnel and run to the entrance. (4) When water inrush from floor happens in the left tunnel, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment in the vicinity of the right tunnel working face. In addition, some rescuing equipment can be set up at the high location of the cross passage. (5) When water inrush from floor happens in the cross passage, tunnel constructors should move to the tunnel side wall quickly, turn to the tunnel without water inrush and run to the entrance. (6) When water inrush from floor happens in the cross passage, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment near by the left or the right tunnel working face. The results are of important practical significance and engineering value to ensure the safety of tunnel construction.

Stability analysis of tunnel spillway under internal water pressure (내부수압이 작용하는 여수로터널의 안정성 검토)

  • Park, Inn-Joon;Park, Moo-Jong;Kim, Sung-In;Kwak, Chang-Won;Jang, Seo-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 2005
  • The influence of internal water pressure under the Probable Maximum Flood (PMF) on tunnel spillway is analysed using 3D FDM analysis. HEC-RAS program including 1-D hydrologic numerical model was also implemented to estimate the maximum pressure on the lining under the PMF, thereafter determined rational internal water pressure. Tunnel spillway was designed as twin tunnel and excavation and supporting stage are fully considered. Analysis was classified into the 3 cases; pressure is applied only to the left tunnel, only to right tunnel, and to both tunnels. The maximum tensile stress and axial force in supporting materials induced by water flow were compared with the critical values to assess the stablilty of the tunnel and the locations of stress concentration parts were also examined.

  • PDF

Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel

  • Ding, Lujun;Liu, Yuhong
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • The finite difference software Flac3D is used to study the influence of tunnel burial depth, tunnel diameter and lateral pressure coefficient of original rock stress on the stress and deformation of tunnel surrounding rock under sandstone condition. The results show that the maximum shear stress, the radius of the plastic zone and the maximum displacement in the surrounding rock increase with the increase of the diameter of the tunnel. When the lateral pressure coefficient is 1, it is most favorable for surrounding rock and lining structure, with the increase or decrease of lateral pressure coefficient, the maximum principal stress, surrounding displacement and plastic zone range of surrounding rock and lining show a sharp increase trend, the plastic zone on the lining increases with the increase of buried depth.

A Safety Analysis of Tunnel Lining for Monitoring (계측에 의한 터널 라이닝의 안전성 분석)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.103-110
    • /
    • 2002
  • Maintenance monitoring of the tunnel which offers continuous data during and after tunneling has been applying to tunnels in order to meet the maintenance of tunnel and to confirm continuous security of the tunnel after tunneling. But, the maintenance monitoring of tunnel results for long period is not easy to find, and moreover, the rational analysis method on tunnel monitoring has not been established yet. In this study, the relationships between displacement and stress of the tunnel concrete lining using various analysis methods are compared with maintenance monitoring. The tunnel behavior were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel concrete lining. Also, analyzed relationship between residual water pressure applied on tunnel design and one obtained by monitoring.

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2011
  • The full-scale experiments are carried out to investigate the fire suppression characteristics of water-based fire fighting systems in a road tunnel. Applied systems are the low-pressure water spray system at 3.5 bar and the high-pressure water mist system at 60 bar. The water flow rate of the high-pressure system is one sixth only of the water spray system. A passenger car and a heptane fuel pan with area of $1.4m^2$ are used as fire sources. A blower system is installed at the tunnel exit to realize the longitudinal ventilation conditions (0.9~3.8 m/s) in the tunnel. Temperatures from the fire source to the down-stream direction are measured by K-type thermocouple trees. The experimental results show that the cooling effect of the high pressure water mist system in the test conditions were equivalent to that of the low pressure water spray system for B-class fire.

Fire Suppression Experiment for Road Tunnel Low Pressure Water Spray Systems (도로터널 저압 물분무설비 화재진압 실험)

  • Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.218-221
    • /
    • 2008
  • The real scale fire suppression test inside a road tunnel were carried out for water spray systems. The dimension of the tunnel is 7.5m in height and 11.6m in width. 3 different water spray nozzle systems with low operating pressure less than 3.5 bar were used in the experiment. Two types of fires were tested. One is a $1.4m^2$ heptane pool fire and the other is a 2000CC passenger car fire. From the experiment, the spray densities of tested systems were about $6.0\;l/min/m^2$ which is currunt domestic guideline. Although all the systems cannot extinguish the tested fires, it was found that they can reduce the tunnel temperature and have a capability to control and suppress the tested fire.

  • PDF

A Case Study on Turkey Eurasia Tunnel Project (터키 유라시아 터널 프로젝트에 대한 사례연구)

  • Kim, Do-Hyung;Bang, Gyu-Min;Jun, Gy-Chan;Kim, Dong-Hyun;Kim, Taek-Kon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.58-69
    • /
    • 2010
  • Turkey Eurasia Tunnel Project is large scale road construction project of which the total length is 14.6km. The subsea shield TBM tunnel will be constructed under Bosphorus strait and the project site is in poor condition as composite ground, high water pressure and earthquake. The design procedure of subsea tunnel was introduced with tender design materials. That procedure contains tunnel type, TBM type and the principal design items considering geological condition such as high water pressure, composite ground and seismic area. This paper states the progress for geotechnical investigation, seismic analysis and TBM tunnel design. Analysis for geotechnical investigation is in progress, aseismatic design is going on stability study for liquefaction and structure. In addition, the performance of shield TBM to be considered such as advance rate and improvement of TBM was reviewed. The plan of fire safety was also reviewed with respect to fire protection.

  • PDF

A Physical Model Test on Behavior of Shield-tunnel Lining according to Drain Conditions (배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.55-65
    • /
    • 2014
  • Most shield tunnels are designed based on the assumption of a undrained condition. But they are operated as drained tunnels in which underground water flows and passes through a drainage facility. Therefore, it is necessary that the drainage condition be considered in the shield tunnel design. In this research, new testing device which can simulate the underground tunnel located below ground water level, was developed. Total stress and pore water pressure were examined and an inflow water into an inner pipe was measured using the testing device. Test results showed that the total stress, which was the sum of effective stress and pore pressure, increased more in an undrained condition and an inflow water into an inner pipe was proportional to the water pressure but inversely proportional to the loading stress. Consequently, if the drainage is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

A Study on Drainage Stability of Cable Tunnel (전력구 터널의 배수 안정성에 관한 연구)

  • 지현석;박준모;장연수;박정순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.687-694
    • /
    • 2002
  • This paper presents the results of 3-D analysis on steady state flow in the region where the leakage in a cable tunnel is occurred due to high excess ground water pressure. In numerical modeling, a relief well is selected as a method of reduction in water pressure at the surrounding region of the cable tunnel. The distribution of ground water level after dewatering by relief wells is analyzed, Results show that the amount of dewatering level in the layer of hard rock is about 4.2∼8.6m, and that in the layer of fracture zone is about 5.8∼8.2m. The predicted settlement at the cable tunnel due to the increase of effective stress by dewatering is 0.3mm.

  • PDF