Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.3.267

Analytical solution for steady seepage and groundwater inflow into an underwater tunnel  

Zou, Jin-feng (Department of Civil Engineering, Central South University, Central South University Railway Campus)
Wei, An (Department of Civil Engineering, Central South University, Central South University Railway Campus)
Liang, Li (Department of Civil Engineering, Central South University, Central South University Railway Campus)
Publication Information
Geomechanics and Engineering / v.20, no.3, 2020 , pp. 267-273 More about this Journal
Abstract
Solutions of the water pressure and groundwater inflow distribution along the tunnel perimeter in a half-infinite aquifer were investigated considering the conditions of the constant head and constant water pressure. It is assumed that the circular tunnel is buried in a fully saturated, homogeneous, isotropic and half-infinite space. Coordinate transformation technique was adopted, the problem of solving the control equations of water pressure in the Cartesian coordinate was transformed to that in the bipolar coordinate system, which can significantly simplify the derivation procedure of the water pressure and inflow distribution. The validation results show the accuracy and advantage of the proposed approach.
Keywords
bipolar coordinate; water pressure; water inflow; half-infinite aquifer;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Aalianvari, A. (2017), "Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage", Geomech. Eng., 13(4), 671-683. https://doi.org/10.12989/gae.2017.13.4.671.   DOI
2 Atkinson, J.H. and Potts D.M. (1977), "Stability of a shallow circular tunnel in cohesionless soil", Geotechnique, 27(2), 203-215. https://doi.org/10.1680/geot.1977.27.2.203.   DOI
3 Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258).   DOI
4 Brown, E.T. and Bray, J.W. (1982), "Rock-lining interaction calculations for pressure shafts and tunnels", Proceedings of the ISRM International Symposium, Aachen, Germany, May.
5 Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. http://doi.org/10.12989/gae.2015.8.3.323.   DOI
6 Fang, Q., Song, H.R. and Zhang, D.L. (2015), "Complex variable analysis for stress distribution of an underwater tunnel in an elastic half plane", Int. J. Numer. Anal. Meth. Geomech., 39(16), 1821-1835. https://doi.org/10.1002/nag.2375.   DOI
7 Farhadian, H., Hassani, A.N. and Katibeh, H. (2017), "Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran", KSCE J. Civ. Eng., 21(6), 2429-2438. https://doi.org/10.1007/s12205-016-0995-2.   DOI
8 Fernandez, G. and Alvarez, T.A. (1994), "Seepage-induced effective stresses and water pressures around pressure tunnels", J. Geotech. Eng., 120(1), 108-127 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(108).   DOI
9 Font-Capo, J., Vazquez-Sune, E., Carrera, J., Marti, D., Carbonell, R. and Perez-Estaun, A. (2011), "Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM)", Eng. Geol., 121(1-2), 46-54. https://doi.org/10.1016/j.enggeo.2011.04.012.   DOI
10 Bauer, S., Liedl, R. and Sauter, M. (2003), "Modeling of karst aquifer genesis: Influence of exchange flow", Water Resour. Res., 39(10). https://doi.org/10.1029/2003WR002218.
11 Gonzalez, C. and Sagaseta, C. (2001). "Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro", Comput. Geotech., 28(6-7), 445-468. https://doi.org/10.1016/S0266-352X(01)00007-6.   DOI
12 Kargar, A.R., Rahmannejad, R. and Hajabasi, M.A. (2015), "The stress state around lined non-circular hydraulic tunnels below the water table using complex variable method", Int. J. Rock Mech. Min. Sci., 78, 207-216. https://doi.org/10.1016/j.ijrmms.2015.04.005.   DOI
13 Harr, M.E. (1962), Groundwater and Seepage, McGraw-Hill, New York, U.S.A.
14 Huang, F., Zhang, M., Wang, F., Ling, T.H. and Yang, X.L. (2020), "The failure mechanism of surrounding rock around an existing shield tunnel induced by an adjacent excavation", Comput. Geotech., 117, 103236. https://doi.org/10.1016/j.compgeo.2019.103236.   DOI
15 Jeffery, G.B. (1921), "Plane stress and plane strain in bipolar co-ordinates", Phil. Trans Royal Soc. London. Series A, r, 221(582-593), 265-293. https://doi.org/10.1098/rsta.1921.0009.   DOI
16 Kolymbas, D. and Wagner, P. (2007), "Groundwater ingress to tunnels-the exact analytical solution", Tunn. Undergr. Sp. Technol., 22(1), 23-27. https://doi.org/10.1016/j.tust.2006.02.001.   DOI
17 Kundu, P.K. and Cohen, I.M. (2008), Fluid Mechanics, Elsevier, Burlington, Vermont, U.S.A.
18 Li, C., Zou, J.F. and Li, L. (2020), "A novel approach for predicting lateral displacement caused by pile installation", Geomech. Eng., 20(2), 147-154. https://doi.org/10.12989/gae.2020.20.2.147.   DOI
19 Lei, S. (1999), "An analytical solution for steady flow into a tunnel", GroundWater, 37(1), 23-26. https://doi.org/10.1111/j.1745-6584.1999.tb00953.x.   DOI
20 Li, C. and Zou, J.F. (2019), "Anisotropic elasto-plastic solutions for cavity expansion problem in saturated soil mass", Soils Found., https://doi.org/10.1016/j.sandf.2019.05.012.
21 Li, T.Z. and Yang, X.L. (2020), "Stability of plane strain tunnel headings in soils with tensile strength cut-off", Tunn. Undergr. Sp. Technol., 95, 103138. https://doi.org/10.1016/j.tust.2019.103138.   DOI
22 Ming, H., Wang, M.S., Tan, Z.S. and Wang, X.Y. (2010), "Analytical solutions for steady seepage into an underwater circular tunnel", Tunn. Undergr. Sp. Technol., 25(4), 391-396. https://doi.org/10.1016/j.tust.2010.02.002.   DOI
23 Loganathan, N. and Poulos, H.G. (1998), "Analytical prediction for tunneling-induced ground movements in clays", J. Geotech. Geoenviron. Eng., 124(9), 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846).   DOI
24 Massinas, S. and Sakellariou, M.G. (2009), "Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr-Coulomb criterion", Geotechnique, 59(8), 691-701. https://doi.org/10.1680/geot.8.069.   DOI
25 Mindlin, R.D. (1940), "Stress distribution around a tunnel", Trans. Amer. Soc. Civ. Eng., 195(1), 1117-1140.   DOI
26 Perrochet, P. and Dematteis, A. (2007), "Modeling transient discharge into a tunnel drilled in a heterogeneous formation", Groundwater, 45(6), 786-790. https://doi.org/10.1111/j.1745-6584.2007.00355.x.   DOI
27 Nur, A. and Byerlee, J.D. (1971), "An exact effective stress law for elastic deformation of rocks with fluids", J. Geophys. Res., 76, 6414-6419. https://doi.org/10.1029/JB076i026p06414.   DOI
28 Ohtsu, H., Ohnishi, Y., Haruo, T. and Katsumi, K. (1999), "A study on problems associated with finite element excavation analysis by the stress-flow coupled method", Int. J. Numer. Anal. Meth. Geomech., 23, 1473-1492. https://doi.org/10.1002/(SICI)1096-9853(199911)23:133.0.CO;2-5.   DOI
29 Park, K.H. and Lee, J.G. (2008), "Seepage force in a drained circular tunnel", An analytical approach", Can. Geotech. J., 45(3), 432-436. https://doi.org/10.1139/T07-113.   DOI
30 Pinto, F. and Whittle, A.J. (2013), "Ground movements due to shallow tunnels in soft ground. I: analytical solutions", J. Geotech. Geoenviron. Eng., 140(4), 04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000948.   DOI
31 Zou, J.F. and Wei, X.X. (2018), "An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling", Geomech. Eng., 16(1), 59-69. https://doi.org/10.12989/gae.2018.16.1.059.   DOI
32 Qian, Z.H., Zou, J.F., Tian, J. and Pan, Q.J. (2020), "Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique", Comput. Geotech., 119(3), 103366. https://doi.org/10.1016/j.compgeo.2019.103366.   DOI
33 Schleiss, A. (1986). ''Design of previous pressure tunnels.'' International Water Power and Dam Construction., Church Hill, U.K., 38(5), 21-26.
34 Verruijt, A. and Booker, J.R. (1996), "Surface settlements due to deformation of a tunnel in an elastic half plane", Geotechnique, 46(4), 753-756. https://doi.org/10.1680/geot.1998.48.5.709.   DOI
35 Xu, X.H., Xiang, Z.C., Zou, J.F. and Wang, F. (2020), "An improved approach to evaluate the compaction compensation grouting efficiency in sandy soil", Geomech. Eng., In Press.
36 Zhang, L. and Franklin, J.A. (1993), "Prediction of water flow into rock tunnels: an analytical solution assuming a hydraulic conductivity gradient", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(1), 37-46. https://doi.org/10.1016/0148-9062(93)90174-C.   DOI
37 Zou, J.F. and Zuo, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479.   DOI