• Title/Summary/Keyword: water power

Search Result 5,435, Processing Time 0.029 seconds

A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction (자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구)

  • 허형석;박경석;이기수;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

Leakage Prevention of Mechanical Seal in a Feed Water Pumpof Power Plant with Oxygen Water Treatment (산소주입 수처리 발전소용 급수펌프 밀봉장치의 누설방지)

  • Shin, Jung-Gook;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • The identifying cause of leakage problems on mechanical seal in a feed water pump of power plant have been difficult because of technical limits of domestic mechanical seal manufacturer and the various conditions of power plants. This paper can get a conclusion through the consideration study and experiment test of mechanical seal characteristics of feed water pump depending on oxygen treatment as follows. The oxygen treatment increase dissolved oxygen and cause a corrosion on the mechanical seal stationary ring composed of antimony as well as leakage problems. For solving leakage problems of seal, to eliminate dissolved oxygen in the cooling water of seal with hydrazine injection can prevent leakage problems of mechanical seal in feed water pump.

  • PDF

Changes in Sea Water Characteristics Due to Operation of Shihwa Tidal Power Plant (조력발전소 가동에 따른 시화 해역의 해수특성 변화)

  • Kang, Young Seung;Chae, Yeongki;Lee, Hyung Rae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.219-235
    • /
    • 2013
  • In order to investigate the changes in sea water characteristics and stratification due to operation of Shihwa tidal power plant, three dimensional numerical model is used. In summer, the density of inner part of Shihwa Lake is more affected by salinity than water temperature due to fresh water discharge. Before tidal power plant operation, the sea water characteristics in Shihwa Lake shows relatively high temperature and low salinity. After tidal power plant operation, water temperature decreases slightly and salinity tends to increase in Shihwa Lake. Also, density increases and stratification tends to weaken by mixing with sea water.

Demonstration of system to combat desertification using renewable energy (신재생에너지를 이용한 사막화 방지 시스템 실증 (몽골))

  • Kim, Man-Il;Lee, Seung-Hun;Whang, Jung-Hun;Cho, Woon-Sic;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.73-76
    • /
    • 2009
  • Generally, wind or solar power system is operated as a stand-alone power system, the efficiency of which could be higher by designing wind-solar combined system considering average wind speed and solar radiation of the desert region, Mongolia. This system is designed to generate electricity for power users and pumps the ground water for irrigation using deep well pump. The ground water can be used for farming or forestation where there is no or little irrigation system. In connection with this study, a renewable energy park, Green Eco Energy Park, was developed at about 50km east of Ulaanbaatar. 3 sets of 10kW wind power generator and 70 kW of solar power module were installed there. The electricity generated from the system is used to on-site office building and deep well pump for ground water pumping. A 10kW stand-alone solar pumping system, which has no rechargeable battery system, is installed to pump the ground water with the amount of generated power. The ground water is stored in 3 artificial ponds and then it is used for raising nursery tree and farming. The purpose of this study is to provide a possible energy solution to desert regions where there is no or little power system. The system also supply power to ground water pump, and the water can be used for farming and forestation, which will also be a solution of preventing desertification or spreading of desert area.

  • PDF

Joint Subcarrier Matching and Power Allocation in OFDM Two-Way Relay Systems

  • Vu, Ha Nguyen;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • A decode-and-forward two-way relay system benefits from orthogonal frequency division multiplexing (OFDM) and relay transmission. In this paper, we consider a decode-and-forward two-way relay system over OFDMwith two strategies: A joint subcarrier matching algorithm and a power allocation algorithm operating with a total power constraint for all subcarriers. The two strategies are studied based on average capacity using numerical analysis by uniformly allocating power constraints for each subcarrier matching group. An optimal subcarrier matching algorithm is proposed to match subcarriers in order of channel power gain for both transmission sides. Power allocation is defined based on equally distributing the capacity of each hop in each matching group. Afterward, a modified water-filling algorithm is also considered to allocate the power among all matching groups in order to increase the overall capacity of the network. Finally, Monte Carlo simulations are completed to confirm the numerical results and show the advantages of the joint subcarrier matching, power allocation and water filling algorithms, respectively.

The Mortar Properties of Portland Cements Blended with Modified Coal Ashes (가공된 석탄재를 사용한 석탄재혼합시멘트의 모르터 특성)

  • 홍원표;노재성;조헌영;정수영;김무한
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.833-840
    • /
    • 1990
  • For the development of multi-functional materials which has water reducing power, air entraining power and waterproofing power as well as blending additive in cement mortar the coal ash was modified with asphalt-stearic acid or asphalt-boiled oil mixtures by mechanical treatment. And the physical properties of cement mortar blended with modified coal ashes were compared with those of the water-tightness-cement mortar and the ordinary-portland-cement mortar added with AE.water reducing agent. The mortar of coalash-blend-cement modified with asphalt-stearic mixture was increased acid about 20% in initial strengths and decreased about 20% in water absorption ratio than those of ordinary coalash-blend-cement. The mortar of coalash-blend-cement modified with asphalt-bolied oil mixture was similar to the cement mortar added with AE.water reducing agent in water reduction ratio, air entraining conents and the initial strengths, also was similar to the water-tightness-cement mortar in water absorption and water permeability ratios.

  • PDF

Improvement in power plant feed water system (발전소의 급수 제어시스템의 개선)

  • 배영환;황재호;서진헌
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.553-556
    • /
    • 1989
  • Nowadays in power plant feed water control, it is very important to retain the stable drum level though power changes very fast. For the stable drum level in power plant, we have to model our plants and get the system functions. We make the L.Q. controller by using these functions and apply it to these systems. And we get the more stable drum level which is controlled by feed water qualities.

  • PDF

Development of Automatic Water Level Measurement System for the Irrigation Reservoir - Study on Low Power and Remote Controlled Water Level Measurement System - (농업저수지 자동 수위관측기 개발 - 저전력 원격제어 수위관측기 중심 -)

  • Kim, Jin-Taek;Joo, Uk-Jong;Choi, Seung-Chul
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.491-494
    • /
    • 2003
  • An Automatic Water Level Measurement System has been developed in this study. It has the characteristics that it use lower power and solar power and it has the ability of sending data and remote-controlled by wireless MODEM this system was set up in the experimental site and was tested. Also, the management system for the water level data has been developed and will be used by instruments administrating reservoirs.

  • PDF

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

Global technologies for the removal of water scaling & water recovery - Department of Energy (DOE) USA

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • In this paper, we reported the current technologies of water scaling removal and also water recovery from the flue gases, which are funded by Department of Energy (DOE), USA. Globally, water resources are limited due to the climate change. The potential impacts of climate change is food and water shortages. In the $21^{st}$ century, water shortages and pollution are expected to become more acute as populations grow and concentrate in cities. At present, the water stress increases over 62.0 ~ 75.8% of total water basin area and decreases over 19.7 ~ 29.0%. Many renewable energy sources demand secure water resources. Water is critical for successful climate change mitigation, as many efforts to reduce greenhouse gas emissions depend on reliable access to water resources. Water hardness is one of the major challenge to coal power plants. Department of energy (DOE) funded and encouraged for the development of advanced technologies for the removal of hardness of water (scaling) and also water recovery from the flue gases from coal power plants.