• Title/Summary/Keyword: water power

Search Result 5,435, Processing Time 0.031 seconds

Pulsed-Power System for Leachate Treatment Applications

  • Jang, Sung-Roc;Ryoo, Hong-Je;Ok, Seung-Bok
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • This paper presents a water treatment system for leachate from sewage-filled ground that uses a pulsed-power modulator developed based on semiconductor switches in order to realize a long life, a high repetition rate, and a fast rising time. The specifications of the developed pulsed-power modulator are the pulsed output voltage, the output current, the pulse repetition rate (PRR), the pulse width, and an average output power of $60\;kV_{max}$, $300\;A_{max}$, 3000, $50\;{\mu}s$, and 15 kW, respectively. The pulsed-power water treatment system was introduced and analyzed using an equivalent electrical circuit model to optimize the output voltage waveform. The experimental results verify that the proposed water treatment system can be effectively used for industrial applications.

Geophysical investigations for deciding alignment of head race tunnel and location of lake tapping at Koyna hydroelectric project, Maharashtra, India

  • Wadhwa R. S.;Chaudhari M. S.;Chandrasekhar V.;Saha A.;Mukhopadhyay R.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.370-378
    • /
    • 2003
  • Continuous seismic refraction, reflection and echo-sounder surveys conducted at Koyna Project site provided geotechnical information which helped in choosing the alignment for Head race tunnel and in designing and choosing the site for Lake Tap. Seismic refraction survey both on land and in shallow water determined depths to bedrock and helped in inferring the bedrock quality. Seismic reflection survey mapped the subsurface stratigraphy with high resolution. Reservoir-bed and bedrock contours drawn from the results of the survey helped in choosing the tunnel alignment and the lake tap position cost effectively. It was inferred from the results of the survey that the geology and the quality of rock do not change unexpectedly around the site for extension of Head race tunnel and the lake tapping. The bedrock levels evaluated by seismic survey agreed remarkably well with those inferred in boreholes having Rock Quality Designation 90 percent or more.

  • PDF

Experimental Study on Prediction and Diagnosis of Leakage and Water Absorption in Water-Cooled Generator Stator Windings by Drying Process Analysis (수냉각 발전기 고정자 권선의 건조 과정 분석을 통한 누설 및 흡습 예측 진단에 관한 실험적 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Lee, Doo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.867-873
    • /
    • 2010
  • The failure of water-cooled generator stator windings as a result of insulation breakdown due to coolant water leaks and water absorption often occurs worldwide. Such failure can cause severe grid-related accidents as well as huge economic losses. More than 50% of domestic generators have been operated for over 15 years, and therefore, they exhibit signs of aging. Leaking and water-absorbing windings are often found during an overhaul. In an existing method for evaluating the integrity of generator stator windings, the drying process of the interior of the windings is ignored and only final leak tests are performed. In this study, it is shown that water leaks and water absorption in stator windings can be detected indirectly through vacuum pattern analysis in the vacuum drying mode, which is the used in the preparation stage of the leak test.

to examine of management standard by the harmonics measured and analyzed in 22.9kV Power lines (22.9kV 수용가 전력계통별 고조파 발생실태 및 관리기준 조사분석)

  • Lee Eun Chun;Shin Gang Wook;Hong Sung Taek;Hong Young Jae;Park Young Chun;Lim Jae Il
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.270-272
    • /
    • 2004
  • At the water supply field, high voltage induction motor is main facility of a load equipment. The motor is often out of order and its noise, generated heat, loss etc occurred occasionally. especially, transmission motor for flux control generates an amount of the harmonics then have a bad influence upon the electric power system. In this study, to analyze the total harmonics distortion of the water supply field receiving high voltage, the harmonics measured and analyzed using the PQA(Power quality Analyzer) according to the electric power system and electrical load and the reduction method presented.

  • PDF

Study on Water / Energy / Mutual-changing Technology by RO/PRO Process (RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구)

  • Choi, Youngkwon;Yun, Taekgeun;Sohn, Jinsik;Lee, Sangho;Choi, June-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

A Wireless Digital Water Meter System using Low Power Sensing Algorithm (저전력 센싱 알고리즘을 활용한 무선 디지털 수도 계량기 시스템)

  • Eun, Seong-Bae;Shin, Gang-Wook;Lee, Young-Woo;Oh, Seung-Hyueb
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.315-321
    • /
    • 2009
  • Remote water meter monitoring is essential in U-city applications, whoγe digital water meter is a key component. While there are several kinds of water meters, the way to use has sensors has the merit of better preciseness, but the drawback of more power consumption. In this paper, we suggest an advanced sensing algorithm to diminish the power consumption while keeping the quality of preciseness. Our approach is to use less precise hall sensor for detecting the start of water impeller rotation with lower power consumption. During the rotation, a high precision hall sensor is used to meter the amount of water consumption. Our algorithm is analyzed to get 2 times lower power consumption than the previous algorithm.

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy (LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성)

  • Kim, Kyounghoon;Oh, Jaehyeong;Jeong, Youngguan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.

Construction of Marine Small Hydro Power Plant using Discharge Water of Fish Farm (양어장 방류수를 이용한 해양소수력발전소 구축에 관한 연구)

  • Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2013
  • This study is aimed to construct a marine small hydro power plant using discharge water of fish farm in Jeju Haengwon-ri. The difference of design methods between marine small hydro power plant and land small hydro power plant is to consider the tides. Moreover, ground condition should be examined because gushout sea water comes out from the ground at high tide in Jeju as the ground of Jeju beach consists of basalt stone. From the field test of the turbine generator after construction of the power plant, output power and efficiency of the turbine generator shows good conformance to the required conditions.

Water Ingress of URD Power Cables with the Jacketing Materials and the Cable Structures (지중 케이블의 외피 재질 및 구조에 따른 수분침투 특성)

  • 한재홍;김동명;이재봉
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.244-247
    • /
    • 2002
  • In order to evaluate the water ingress to URD power cables with the jacketing materials and the cable structures, water vapor transmission (WVT) tests were carried out by the ASTM and the TEPCO's specification. All polyolefin compounds showed the superior water suppression to conventional PVC. Especially, linear polyethylenes have very low WVT. In case of cable structures, Allaminate cables showed the significant water suppression due to the watertight structure. Accordingly, it can be concluded that jacketing material and cable structure play an important role in the water suppression of URD power cables.

  • PDF