• Title/Summary/Keyword: water power

Search Result 5,404, Processing Time 0.034 seconds

Laser Peening Application for PWR Power Plants (비등수형 원자로 발전소에의 레이저 피닝 적용기술)

  • Kim, Jong-Do;SANO, Yuji
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.13-18
    • /
    • 2016
  • Toshiba has developed a laser peening system for PWRs(pressurized water reactors) as well after the one for BWRs(boiling water reactors), and applied it for BMI(bottom-mounted instrumentation) nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described.

Numerical Investigation on the Water Discharge Capability of Tidal Power Plant Using CFD (CFD를 사용한 조력발전소 수문의 통수성능 연구)

  • Kim, Gunwoo;Oh, Sangho;Han, Insuk;Ahn, Sukjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.161-161
    • /
    • 2011
  • The design methodology of the sluice caisson structure is one of important factor that is closely related to the efficiency in tidal power generation. When the sluice caisson is designed to maximize the water discharge capability, it is possible to minimize the number of sluice caissons for attaining the water amount required for achieving the target power generation, which results in reduction of the construction cost for the sluice caisson structure. The discharge capability of sluice caisson is dependent on the geometrical conditions of an apron structure which is placed in both sides of the sluice caisson. In this study, we investigated numerically the variation of water discharge capability of sluice caisson according to the geometrical conditions of apron. Flow fields are simulated with FLOW-3D software using VOF method.

  • PDF

An Experimental Investigation of the Interfacial Condensation Heat Transfer in Steam/water Countercurrent Stratified Flow in a Horizontal Pipe

  • Chu, In-Cheol;Yu, Seon-Oh;Chun, Moon-Hyun;Kim, Byong-Sup;Kim, Yang-Seok;Kim, In-Hwan;Lee, Sang-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.565-570
    • /
    • 1998
  • An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within $\pm$15%

  • PDF

Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation (디젤발전 자켓냉각시스템 열성능 향상 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo;Yoon, Seok-Won;Park, Pill-Yang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.

Feasibility for the Application of Wind Power Energy in SI WHA (시화지구의 풍력에너지 활용 가능 타당성)

  • Hong, Yeong-Jae;Chae, Ji-Seog;Kim, Hee-Gon;Kim, Ki-Won;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1725-1727
    • /
    • 2005
  • Korea Water Resource Corporation is planning the active application on the New-Renewable energy enterprise at Si-Wha region which is located in Kyonggi-Do, builded up as the national policy enterprise and also currently carrying out a tidal electric power station construction. This research is considered of geography circumstance of the region. We are to analyze a wind power resources application feasibility in the side of economical efficiency and see simultaneously application of the wind power system also.

  • PDF

Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler (유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구)

  • Gil, Doo-Song;Jung, Gye-Jo;Seo, Jung-Seok;Kim, Hak-Joon;Kwon, Chan-Wool
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Water wall tube is one of the major factors consisting of a fluidized bed boiler and it plays very important role for the generation of electricity within the boiler. But these water wall tubes within the fluidized bed boiler are subject to the ware and corrosion caused by the high temperature gas and the flowing medium. If water leak is occurred, the secondary damage by the water leak will occur. As a result of that, the power generation efficiency decreases noticeably. Therefore, the maintenance of the water wall tube is very important. In this study, we designed a exciter sensor based on simulation and composed a remote field eddy current system for the defect evaluation of the outer water wall tube. Starting from the shape design of exciter, we conducted simulations for various design factors such as the water wall tube size, material, frequency, lift-off and so on. Based on the results, we designed the optimum exciter sensor for the water wall tube test within the fluidized bed boiler.

Performance Characteristics of a Mixed Refrigerant OTEC Power Cycle Using Hot Waste Water (온배수를 이용한 혼합냉매용 해양온도차 발전 사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Heo, Jeong-Ho;Ye, Byoung-Hyo;Kim, Hyun-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.102-107
    • /
    • 2013
  • In this paper, the performance analysis for evaporation capacity, total work and efficiency of the ocean thermal energy conversion(OTEC) power system using mixed refrigerant(R32,R152a) is conducted to find the effect of hot wasted water on OTEC power system. The system in this study is applied with two stage turbine, regenerator, cooler and separator on Organic Rankine Cycle. The commercial program HYSYS is used for the performance analysis. The main results were summarized as follows : The efficiency of the OTEC power cycle has a largely effect on the evaporation capacity and total work. As increasing temperature of heat source water, evaporator's capacity is decreased but total work increase. Otherwise, using hot wasted water bring effects not only increasing system efficiency but also declining evaporator's capacity. Thus With a thorough grasp of these effect, it is necessary to find way to use hot wasted water emitted by power plant and so on.

Calculation of Generation Power Integrating Sihwa Tidal Power into Power Systems (시화조력발전 계통연계에 따른 시간대별 발전량 산정)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.157-163
    • /
    • 2007
  • This paper presents a method to calculate generation power for integrating Sihwa tidal power into power systems. The sea levels of 1 minute interval using cubic interpolation based on the forecasted levels of high and low water offered from Nori(National Oceanographic Research Institute) are calculated. If the sea level is greater than the lake level and the difference between sea level and lake level at high tide is over the default value, it begins to calculate the tidal power. It is seen that tidal power can supply power to demand side stably and economically from assessment of effect for integrating tidal power into power systems.

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

Investigation of Stimulated Polariton Scattering from the B1-symmetry Modes of the KNbO3 Crystal

  • Li, Zhongyang;Wang, Mengtao;Wang, Silei;Yuan, Bin;Bing, Pibin;Xu, Degang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.90-95
    • /
    • 2018
  • Stimulated polariton scattering from the $B_1$-symmetry modes of a $KNbO_3$ crystal to generate a terahertz wave (THz-wave) with a noncollinear phase-matching scheme is investigated. The frequency-tuning characteristics of the THz-wave by varying the phase-matching angle and pump wavelength are analyzed. The expression for the effective parametric gain length under the noncollinear phase-matching condition is deduced. Parametric gain and absorption characteristics of the THz-wave in $KNbO_3$ are theoretically simulated. The characteristics of $KNbO_3$ for a terahertz parametric oscillator (TPO) are compared to those of $MgO:LiNbO_3$. The analysis indicates that $KNbO_3$ is an excellent optical crystal for a TPO, to enhance the THz-wave output.