• Title/Summary/Keyword: water network

Search Result 2,022, Processing Time 0.03 seconds

A Study on Rainfall Prediction by Neural Network (神經網理論에 의한 降雨豫測에 관한 硏究)

  • 오남선;선우중호
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.109-118
    • /
    • 1996
  • The neural network is a mathematical model of theorized brain activity which attempts to exploit the parallel local processing and distributed storage properties. The neural metwork is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. A multi-layer neural network is constructed to predict rainfall. The network learns continuourvalued input and output data. Application of neural network to 1-hour real data in Seoul metropolitan area and the Soyang River basin shows slightly good predictions. Therefore, when good data is available, the neural network is expected to predict the complicated rainfall successfully.

  • PDF

Impact assessment for water pressure and turbidity occurrence by changes in water flow rate of large consumer at water distribution networks (상수도관망에서 대수용가의 유량변화에 따른 수압 및 탁도발생 영향평가)

  • Choi, Doo Yong;Kim, Ju-Hwan;Choi, Min-Ah;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • Water discolouration and increased turbidity in the local water service distribution network occurred from hydraulic incidents such as drastic changes of flow and pressure at large consumer. Hydraulic incidents impose extra shear stresses on sediment layers in the network, leading to particle resuspension. Therefore, real time measuring instruments were installed for monitoring the variation of water flow, pressure, turbidity and particulates on a hydrant in front of the inlet point of large apartment complex. In this study, it is attempted to establish a more stable water supply plan and to reduce complaints from customers about water quality in a district metering area. To reduce red or black water, the water flow monitoring and control systems are desperately needed in the point of the larger consumers.

Development of a Client/Server Socket Program using Remote Measurement of Digital Water Meters (상수도 원격 검침 데이터 송수신 위한 Client/Server 소켓 프로그램 개발)

  • Ayurzana, Odgerel;Park, Yong-Man; Kwon, Jong-Won;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.153-155
    • /
    • 2006
  • An automatic remote water measurement system was developed. This system sends automatic remote measured and collected water meters data automatically from the transmitter with CDMA modem through SK-Telecom network The water meter data are received through LAH TCP/IP and displayed as test file on IE(Internet Explorer) window. The existing water meters of mechanical type have so many problems to measure data. The person must visit the location of each water meters and write down the data records manually. In this system the RF module has attached each water meter Client/Server programs are developed by network socket programming.

  • PDF

Water pipe deterioration assessment using ANN-Clustering (ANN-Clustering 기법을 이용한 상수관로 노후도 평가 및 분류)

  • Lee, Sleemin;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.959-969
    • /
    • 2018
  • The aging water pipes induce various problems, such as water supply suspension due to breakage, insufficient water pressure, deterioration of water quality, damage by sink holes, and economic losses due to water leaks. However, it is impractical and almost impossible to repair and/or replace all deteriorated water pipes simultaneously. Hence, it is required to quantitatively evaluate the deterioration rate of individual pipes indirect way to determine the rehabilitation order of priority. In this study, ANN(Artificial Neural Network)-Clustering method is suggested as a new approach to assess and assort the water pipes. The proposed method has been applied to a water supply network of YG-county in Jeollanam-do. To assess the applicability of the model, the evaluation results were compared with the results of the Numerical Weighting Method (NWM), which is being currently utilized in practice. The assessment results are depicted in a water pipe map to intuitively grasp the degree of deterioration of the entire pipelines. The application results revealed that the proposed ANN-Clustering models can successfully assess the water pipe deterioration along with the conventional approach of NWM.

Outlier Detection of Real-Time Reservoir Water Level Data Using Threshold Model and Artificial Neural Network Model (임계치 모형과 인공신경망 모형을 이용한 실시간 저수지 수위자료의 이상치 탐지)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Lee, Jaeju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • Reservoir water level data identify the current water storage of the reservoir, and they are utilized as primary data for management and research of agricultural water. For the reservoir storage management, Korea Rural Community Corporation (KRC) installed water level stations at around 1,600 agricultural reservoirs and has been collecting the water level data every 10 minutes. However, various kinds of outliers due to noise and erroneous problems are frequently appearing because of environmental and physical causes. Therefore, it is necessary to detect outlier and improve the quality of reservoir water level data to utilize the water level data in purpose. This study was conducted to detect and classify outlier and normal data using two different models including the threshold model and the artificial neural network (ANN) model. The results were compared to evaluate the performance of the models. The threshold model identifies the outlier by setting the upper/lower bound of water level data and variation data and by setting bandwidth of water level data as a threshold of regarding erroneous water level. The ANN model was trained with prepared training dataset as normal data (T) and outlier (F), and the ANN model operated for identifying the outlier. The models are evaluated with reference data which were collected reservoir water level data in daily by KRC. The outlier detection performance of the threshold model was better than the ANN model, but ANN model showed better detection performance for not classifying normal data as outlier.

Fabrication and Network Strengthening of Monolithic Silica Aerogels Using Water Glass (물유리를 이용한 모노리스 실리카 에어로젤의 제조 및 구조강화)

  • Han, In-Sub;Park, Jong-Chul;Kim, Se-Young;Hong, Ki-Seog;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.162-168
    • /
    • 2007
  • Silica wet gels were prepared ken water glass ($29\;wt%\;SiO_{2}$) by using Amberlite as a ion exchange resin. After washing in distilled water, the wet gels were further aged in a solution of TEOS/EtOH to strengthen of 3-dimensional network structure. As increase TEOS content in aging solution, BET surface area and porosity of the ambient dried silica aerogels were significantly decreased, and average pore diameter was also decreased 30 nm to -10 nm. Also, higher density and compressive strength were obtained in case of higher TEOS content. This is due to precipitation of $SiO_{2}$ nano particles by TEOS. Hence, TEOS addition plays an important role of both strengthening and stiffness of silica wet gel network. By adding over 30 vol% TEOS, a crack-free monolithic silica aerogel tiles were obtained and its density, compressive strength, and thermal conductivity were shown $0.232g/cm^{3}$, 7.3 MPa, and 0.029 W/mk, respectivly.

Reservoir Water Level Forecasting Using Machine Learning Models (기계학습모델을 이용한 저수지 수위 예측)

  • Seo, Youngmin;Choi, Eunhyuk;Yeo, Woonki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.

Hydraulic Analysis and Sizing of Inlet-Pipe Diameter for the Water Distribution Network (상수급수관 인입관경 제안 및 수리해석)

  • Shin, Sung-kyo;Kim, Eun-ju;Choi, Si-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • The objective of this study is to determine the appropriate size of the inlet pipe diameter and thereby conduct hydraulic analysis for the Korean water distribution network. To this end, the data tables for equivalent pipe diameters and outflow rates presently employed in Korea were adopted. By incorporating the table of equivalent pipe diameters, it was found that the size of the inlet pipe diameter was overestimated, which can cause shortage of water pressure and malfunctioning or insufficiency of outflow rate in the corresponding adjacent region. However, by conducting hydraulic analysis based on the table of outflow rates, relatively reasonable flow rates were observed. Furthermore, by comparing the real demand-driven analysis (RDDA) approach and demand-driven analysis (DDA) approach toward managing the huge water demand, it was observed that DDA could not effectively respond to real hourly usage conditions, whereas RDDA (which reflects the hourly effects of inlet pipe diameter and storage tanks) demonstrated results similar to that of real water supply.

The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems (상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.325-334
    • /
    • 2007
  • In this study, a long-term unsteady simulation model has been developed using rigid water column theory which is more accurate than Extended-period model and more efficient comparing with water-hammer simulation model. The developed model is applied to 24-hours unsteady simulation considering daily water-demand and water-hammer analysis caused by closing a valve. For the case of 24-hours daily simulation, the pressure of each node decreases as the water demand increase, and when the water demand decrease, the pressure increases. During the simulation, the amplitudes of flow and pressure variation are different in each node and the pattern of flow variation as well as water demand is quite different than that of KYPIPE2. Such discrepancy necessitates the development of unsteady flow analysis model in water distribution network system. When the model is applied to water-hammer analysis, the pressure and flow variation occurred simultaneously through the entire network system by neglecting the compressibility of water. Although water-hammer model shows the lag of travel time due to fluid elasticity, in the aspect of pressure and flow fluctuation, the trend of overall variation and quantity of the result are similar to that of water-hammer model. This model is expected for the analysis of gradual long-term unsteady flow variations providing computational accuracy and efficiency as well as identifying pollutant dispersion, pressure control, leakage reduction corresponding to flow-demand pattern, and management of long-term pipeline net work systems related with flowrate and pressure variation in pipeline network systems