• Title/Summary/Keyword: water need

Search Result 1,945, Processing Time 0.032 seconds

A Construction Case of Flow Equal Distribution System in Series Connection (직렬 연결구조의 유량균등분배 시스템 시공사례)

  • Jeong, Ung-Sung;Lee, Sung-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.64-65
    • /
    • 2017
  • The existing hot and cold water supply system have a few problems such as construct ability, damage of the building, maintenance and the unequal distribution of water supply flow. So the system has needs to be improved and the Flow Equal Distribution System(FEDS) in series connection has been innovated by Idin Lab which relieve the existing problems. Thus, the purpose of this study is aimed to show the merits of FEDS with an real example of construction site of Wirye Terrace, D builder. 1. FEDS enables builders to save construction cost as the system in series connection does not need to equip both allotters and loop piping system. 2. FEDS contains a cartridge of water saving function so it mainly reduce the unequal distribution of flow and sudden temperature deviation of hot water supply at the same time. 3. FEDS allows repairer to maintain the water supply system at the same floor that could get rid of disharmony between dwellers who live the upper/lower story of the same building. Therefore, the FEDS will be applied when the building is remodeled and constructed.

  • PDF

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

A Study on the change of Ecological Environment in Cave cause by the Pollution of Cave Environment and Analysis of Environmental Pollutants in Cave (환경오염으로 인한 동굴생태환경의 변화와 환경오염물질 분석에 관한 연구)

  • 이경호
    • Journal of the Speleological Society of Korea
    • /
    • no.61
    • /
    • pp.5-16
    • /
    • 2000
  • Recently many environmental researcher are concerned about the ecological environment and the issue of environmental pollution in cave. In this paper we discuss about air pollution, water pollution, state of water quality, ecological environment and situation of environmental public damage in cave The concerning of air pollution in cave is mainly to the type of secondary contamination, which much is developed in various fields recently. The natural water in the most of cave is no problems but ground water has slitting with natural water during much raining period. The state of water quality is gradually contaminated with artificial environmental pollution, that is, the contents of kinds of Aluminum, Nickel, Copper, Zinc and Calcium are higher than before. On the other hand it is very important things to keep the control of constant temperature, darkness and humidity in cave. The contamination by lamp flora and even black colored contamination are appeared nowadays. The ecological environment in cave destructed by growing of mi coorganism. In fact the internal of cave is shielded with the state of climate of cave external but the environment of internal cave is contaminated, because blowing from external climate state. In addition to environmental pollution caused by carbon dioxide and body temperature of tourists. By the way eco-examination of cave is black color public damage, green color one and white color one has been discovered, so we need to have the situation of demand of environmental reservation alternatives.

  • PDF

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Design of FMCW radar waveform for flow measurement (유량 측정을 위한 FMCW 레이다 파형 설계)

  • Lee, Changki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • A commercial flow measurement radar sensor estimates a quantity of flowed water using surface flow rate. In this way, the amount of water flowing per unit time cannot be measured accurately because of using an estimation result and it can't response environmental changes. For more accurate flow measurements we need width of waterway, water level and distance that water moved per unit time. Commonly two sensors are used to measure water level and flow rate. In this paper, we propose a method to simultaneously measure the water level and surface flow velocity using a single FMCW radar sensor and design the transmission waveform. In order to verify the waveform design, received signal is modelled based on transmission waveform. In addition, we consider phenomenons and problems that may occur in signal processing.

The Investigation of Rainwater Quality Variation and Rainfall Characteristic for the Effective Usage (우수이용 효율화를 위한 수질변화와 강우특성 검토)

  • Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.355-361
    • /
    • 2008
  • A water quality analysis of rainwater collected from catchment equipment ($2m{\times}1m$) was conducted to determine its suitability for domestic purposes, in this study. As the results of analysis, the pH of rainwater was $6.3{\pm}0.3$, and the turbidity of rainwater was over the 5 times than drinking water guidelines. For the usage of rainwater as the domestic and drinking water, the rainwater is need to treat. The analysis values of heavy metal as the Pb, Cd, Fe, Mn, ${Cr_6}^+$ and Cu was satisfied with drinking guidelines. Rainwater quality was improved in the rainfall duration. Overall results of analysis support the possibility of rainwater as the domestic and drinking water.

A Case Study on the Visually Impaired Secondary Students' Conception of the Changes of State of Water (시각장애 중고등학생의 물의 상태변화 개념에 대한 사례 연구)

  • Kim, Hak Bum;Cha, Jeongho
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • In this study, visually impaired secondary students' conception of "changes of state of water" was explored. Science inquiry activity for students with visual impairments was implemented to 16 middle school students and 15 high school students from school for the blind. 14 of them were totally blind, 13 had low vision and the others were not identified. Inquiry activities were conducted by communicating with the researcher while students were individually exploring the molecular models of water and ice developed for the study. After the exploration, students were asked to explain the concept of changes of state of water with the model they explored. Opinion on the need and the usability of this kind of tactile model was also asked to them. All conversations were recorded, transcribed, and analyzed. As a result, students with visual impairments answered exactly about the materials used for the model and their numbers. However, they didn't know what the model stood for. They had experiences of learning molecule of water and changes of state of water, but it was a phenomenon and superficial understanding. Students got to understand the molecular structures of water and ice, and had a positive perception on the need and the usability of the model. Based on these results, educational implications were discussed.

A study on performance analysis and merging techniques of sensors in water quality measurement (수질계측센서의 성능분석 및 센서 융합기술에 관한 연구)

  • Yang Keun-Ho;Yoo Byung-Kook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2006
  • There are need to manage the water quality to supply an safety to consumer through pipe and reservoir the drinking water that produced in a clean water reservoir. However, a management of water quality and monitoring in reservoir have never been performed. Recently, the government has enforced standards of water quality. However, we have a inferior technology of water quality as compared with one in USA, Japan, Germany, etc. In case of water quality inspection and analysis equipments, sensor technology is very important to improve the water quality inspection and to develop the analysis equipments. In this paper, we analyze a law and a regulation for management of drinking water quality, and propose the measurement standards of drinking water quality in pH, conductivity, residual chloride, turbidity and water temperature. Then, we analyze electrode sensors that interference within pH, conductivity, residual chloride in interference experiment.

  • PDF