본 논문에서는 수괴가 능동소나에서 허위표적으로 오인 탐지 될 수 있는지에 대한 여부를 시각적으로 확인하기 위해 시간영역에 대한 음파 전달 수치 실험을 수행하였다. 수치 실험을 위해 무한영역에 과장된 수괴를 표적으로 구성하였으며 불연속 경계에 대해 개발된 시간영역 유사스펙트럴 모델을 이용하여 산란신호를 계산하고 해석해와 비교하였다. 또한, 시간에 따른 음파전달양상을 모의하였다. 이를 통해 수괴 자체가 허위표적으로 탐지 될 수 없음을 확인하였다.
Spatial distribution and vertical structures of water masses around the Antarctic continental margin are described using synthesized hydrographic data. Antarctic Surface Water (AASW) over the shelf regime is distinguished from underlying other water masses by the cut-off salinity, varying from approximately 34.35 to 34.45 around Antarctica. Shelf water, characterized by salinity greater than the cut-off salinity and potential temperature less than $-17^{\circ}C$, is observed on the Ross Sea, off George V Land, off Wilkes Land, the Amery Basin, and the Weddell Sea, but in some shelves AASW occupies the entire shelf. Lower Circumpolar Deep Water is present everywhere around the Antarctic oceanic regime and in some places it mixes with Shelf Water, producing Antarctic Slope Front Water (ASFW). ASFW, characterized by potential temperature less than about $0^{\circ}C$ and greater than $-17^{\circ}C$, and salinity greater than the cut-off salinity, is found everywhere around Antarctica except in the Bellingshausen-Amundsen sector. The presence of different water masses over the Antarctic shelves and shelf edges produces mainly three types of water mass stratifications: no significant meridional property gradient in the Bellingshausen and Amundsen Seas, single property gradient where ASFW presents, and a V-shaped front where Shelf Water exists.
Oceanographic observation and qualitative analysis for deep ocean water in the East Sea were carried out from January 2003 to January 2004, in order to understand the characteristics of deep sea water in the East Sea. Temporal and spatial variation of water masses were discussed from survey of the study area including the coastal sea of Kwangwon province in where the polar front mixing cold and warm water masses were formed. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW) (2) Tsushima Surface water (TSW) (3) Tsushima Middle Water (TMW) (4) North Korea Cold Water (NKCW) and (5) East Sea Proper Water (ESPW). In winter, surface water in coastal sea of Kwangwaan Kosung region were dominated by North Korean Cold Water (NKCW). As Tsushima warm current were enforced in summer, various water masses were vertically emerged in study area, in order of TSW, TMW, NKCW and ESPW. It is highly possible that the LSSW which occurred at surface water of september is originated from influx of fresh water due to the seasonal rainy spell. Nevertheless water masses existed within surface water were seasonally varied, water quality characteristics of East Sea Proper Water (ESPW) under 300 m did not changed all the seasons of the year.
In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.
With the results of observations in 2013 and 2014 including ocean buoys, in-situ investigations and wind data, we examined the spatio-temporal variation of cold water masses along the eastern coast of Korea. Usually, a cold water mass first appears along the northern part of the eastern coast from May to July, and then along the southern part of the eastern coast from late June to mid-August. Cold water masses appear 3~5 times a year and remain for 5~20 days in the southwestern part of the East Sea. A distinctive cold water mass appeared usually in mid-July in this area, the surface temperature of which was below $10^{\circ}C$ in some cases. During the appearance of a cold water mass in the southwestern part of the East Sea, the horizontal temperature gradient was large at the surface and a significant low water temperature below $8^{\circ}C$ appeared at the bottom level. This appearance of cold water masses clearly corresponded to southwesterly winds, which generated coastal upwelling.
The interannual variability of the water masses was analyzed from the CTD data measured in the tropical northwestern Pacific from 2006 to 2014. There are two typical water masses NPTW and NPIW that reveal the interannual variability in the survey area, in addition to two other water masses; the surface water mass TSW with a large seasonal variability and the deep water mass AACDW with a constant temperature-salinity characteristic at the depths deeper than 2,000 meters. In 2012 and 2014 NPTW was the most widely extended horizontally and thicker than 100 meters vertically, which was found over the entire survey area. However, NPTW was reduced and became much narrower in 2009 than in the other years. NPIW seemed to expand southwards from the north of $21^{\circ}N$ to $15^{\circ}N$ in 2008 and in 2012, which showed the salinity minimum in 2013 (< 34.15 psu). The sea surface height estimated by Absolute Dynamic Topography (ADT) approximately along $135^{\circ}E$ section showed the high peaks (> $1.45dyn{\cdot}m$) between $16^{\circ}N$ and $18^{\circ}N$ during the periods between 2007 and 2009 and between 2012 and 2013; the former peak lasted wider and longer in latitude and time (about three times) than the latter. The vertical section of the geostrophic currents in the upper 1,000 meters shows that there was a mesoscale pattern of repeated eastward and westward flows a few times in some years (2010 and 2014), which seemed to disappear in some other years (2008 and 2012); the former was closely related to the mesoscale eddies and the latter implied the pattern with the permanent currents. The persistent eastward flow between $17^{\circ}N$ and $19^{\circ}N$ seems to be related to the Subtropical Countercurrent (STCC).
The effects of fractures in rock masses on the groundwater flow and the groundwater flow system in the volcanic rocks are analyzed by GFFP-WT model, which allows more realistic analysis of groundwater system by considering the fractures in rock masses. The evaluation of the effects of fractures in rock masses on the groundwater flow has been carried out in the 2nd Yeonwha and resulted in that the fractures mostly influence flow time because of hydraulic head distribution change. The results of the groundwater flow system analysis in the volcanic rocks are as follows. Most of groundwater once flowed in Lapilli tuff flowed out through Lappilli tuff layer. But only a small fraction of water flowed out through crystal tuff layer.
Wu, Na;Liang, Zhengzhao;Li, Yingchun;Qian, Xikun;Gong, Bin
Geomechanics and Engineering
/
제18권6호
/
pp.627-638
/
2019
Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.
Tsushima Warm Current(WD entering into the East Sea through the Korean Strait flows northeastward and during this travel it shows complicated movement like meandering and eddy. It is considered that these variations of TWC are important causes making water masses unstable and also have influence on biological and chemical properties of water masses. Lee and Cho(2000) suggested that meandering of TWC in adjacent waters of Noto peninsula has much influence on fluctuation of current structure. (omitted)
Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
Geomechanics and Engineering
/
제23권2호
/
pp.151-163
/
2020
Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.