• Title/Summary/Keyword: water level sensor

Search Result 172, Processing Time 0.032 seconds

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

Basic Study on Monitoring System of Reservoir and Leeve Using Wireless Sensor Network (무선센서 네트워크 계측을 이용한 저수지 및 제방 계측시스템 구축에 관한 기초연구)

  • Yoo, Chanho;Kim, IkHoon;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2018
  • Conventional monitoring method is used for evaluation of the reservoir and levee at the highest height sections. In recent years, automated measurement technology has been developed, and the measurement results are transmitted, collected and stored in real time into management office. Despite the development of real time monitoring technology, the measurement results are not used directly or indirectly with facility management at real time. Recently, as wireless sensor network measurement technology has been developed based on internet of things, this study proposed a real - time measurement and evaluation system based on wireless sensor network technology in the reservoir structure. As a result of the seepage analysis for the application, it was confirmed that the volumetric water content changes together with the change of the seepage line inside the embankment body according to the change of the water level of the embankment. In other words, the applicability of the measurement system with the volumetric water ratio set as the sensor node was verified.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

A Study on Oil's Contamination Detection System using Optical Fiber Sensor (광섬유 센서를 이용한 오일 오염도 검사시스템 연구)

  • Song, Doo-Sang;Hong, Jun-Hee;Ryu, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.541-546
    • /
    • 2012
  • This study investigates the detection system of oil pollution level using single optical fiber sensor. This study focus on sensing of oil pollution by moisture and iron powder which are representatives of oil pollution factor. In addition, It is placed that the water and iron powder as an oil pollution factor in the oil tank which is the oil circulation in. The oil pollution detection system was measured by the changing of intensity of light and sensing gap. The result of this experimentation not only confirmed the contamination by moisture volume in the oil tank from the section 190ppm to 540ppm, but also monitored the contamination by iron volume from the section 1200ppm to 3500ppm. This study confirmed effectiveness of this detection system using optical fiber sensor. There is expectations of measuring another section by various optical fiber sensor.

Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors

  • Altabey, Wael A.;Noori, Mohammad
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.499-513
    • /
    • 2018
  • One of the major problems in glass fiber reinforced epoxy (GFRE) composite pipes is the durability under water absorption. This condition is generally recognized to cause degradations in strength and mechanical properties. Therefore, there is a need for an intelligent system for detecting the absorption rate and computing the mass of water absorption (M%) as a function of absorption time (t). The present work represents a new non-destructive evaluation (NDE) technique for detecting the water absorption rate by evaluating the dielectric properties of glass fiber and epoxy resin composite pipes subjected to internal hydrostatic pressure at room temperature. The variation in the dielectric signatures is employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such defects. ECS consists of twelve electrodes mounted on the outer surface of the pipe. Radius-electrode ratio is defined as the ratio of inner and outer radius of pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes on the basis of water absorption rate in the pipe material as a function of absorption time. The arrangements for positioning12-electrode sensor parameters such as capacitance, capacitance change and change rate of capacitance are analyzed by ANSYS and MATLAB to plot the mass of water absorption curve against absorption time (t). An analytical model based on a Fickian diffusion model is conducted to predict the saturation level of water absorption ($M_S$) from the obtained mass of water absorption curve. The FE results are in excellent agreement with the analytical results and experimental results available in the literature, thus, validating the accuracy and reliability of the proposed expert system.

Development of a Sensorless Deep Well Pump Multi-function Controller using Current Detection Method (전류검출 방식의 심정 펌프 센서리스형 다기능 컨트롤러 개발)

  • Lee, In-Jae;Basnet, Barun;Chun, Hyun-Jun;Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1149-1154
    • /
    • 2017
  • In this paper, we propose a sensorless multi-function controller applicable for deep well water pumps using current detection method. The proposed system overcomes various drawbacks of existing sensored system and additional features like Over current protection function due to overload, Under current protection function for idling at low water level and Relay function for starting single phase motors and acts as a level indicator to detect water lever in real time by the current detection method. A prototype of the multi-function controller system is designed and all of its functions are tested in the laboratory. The application of the proposed controller ensures reduction in the power consumption and maintenance cost in the facilities like water and septic tanks, drainage and waste water system, oil and chemical tanks where deep well pumps are used.

Analysis of the urban flood pattern using rainfall data and measurement flood data (강우사상과 침수 실측자료를 이용한 도시침수 양상 관계분석)

  • Moon, Hye Jin;Cho, Jae Woong;Kang, Ho Seon;Lee, Han Seung;Hwang, Jeong Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.95-95
    • /
    • 2020
  • Urban flooding occurs in the form of internal-water inundation on roads and lowlands due to heavy rainfall. Unlike in the case of rivers, inundation in urban areas there is lacking in research on predicting and warning through measurement data. In order to analyze urban flood patterns and prevent damage, it is necessary to analyze flooding measurement data for various rainfalls. In this study, the pattern of urban flooding caused by rainfall was analyzed by utilizing the urban flooding measuring sensor, which is being test-run in the flood prone zone for urban flooding management. For analysis, 2019 rainfall data, surface water depth data, and water level data of a street inlet (storm water pipeline) were used. The analysis showed that the amount of rainfall that causes flooding in the target area was identified, and the timing of inundation varies depending on the rainfall pattern. The results of the analysis can be used as verification data for the urban inundation limit rainfall under development. In addition, by using rainfall intensity and rainfall patterns that affect the flooding, it can be used as data for establishing rainfall criteria of urban flooding and predicting that may occur in the future.

  • PDF

Accuracy Analysis of GPS-derived Precipitable Water Vapor According to Interpolation Methods of Meteorological Data (기상자료 보간 방법에 의한 GPS기반 가강수량 산출 정확도 분석)

  • Kim, Du-Sik;Won, Ji-Hye;Kim, Hye-In;Kim, Kyeong-Hui;Park, Kwan-Dong
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.33-41
    • /
    • 2010
  • Approximately 100 permanent GPS stations are currently operational in Korea. However, only 10 sites have their own weather sensors connected directly to the GPS receiver. Thus. calculation of meteorological data through interpolation of AWS data are needed to determine precipitable water vapors at a specific GPS station without a meteorological sensor. This study analyzed the accuracy of two meteorological data interpolation methods called reverse sea level correction and kriging. As a result, the root-mean square-error of reverse sea level correction were seven times more accurate in pressure and twice more accurate in temperature than the kriging method. For the analysis of PWV accuracy, we calculated GPS PWV during the summer season in :2008 by using GPS observation data and interpolated meteorological data by reverse sea level correction. And, we compared GPS PWV s based on interpolated meteorological data with those from radiosonde observations and GPS PWV s based on onsite GPS meteorological sensor measurements. As a result, the accuracy of GPS PWV s from our interpolated meteorological data was within the required operational accuracy of 3mm.

Developing an On-Line Monitoring System for a Forest Hydrological Environment - Development of Hardware - (산림수문환경(山林水文環境) 모니터링을 위(爲)한 원거리(遠距離) 자동관측(自動觀測)시스템의 개발(開發) - 하드웨어를 중심(中心)으로 -)

  • Lee, Heon Ho;Suk, Soo Il
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.405-413
    • /
    • 2000
  • This study was conducted to develop an on-line monitoring system for a forest hydrological environment and its meteorological condition, such as temperature, wind direction and speed, rainfall and water level on V-notch, electrical conductivity(EC), potential of hydrogen(PH) by the motor drive sensor unit and measurement with a single-chip microprocessor as controller. These results are summarized as follows ; 1. The monitoring system consists of a signal process unit, motor drive sensor unit, radio modem unit and power supply. 2. The motor drive sensor unit protects the sensor from swift current or freezing and can constantly maintain fixed water level during measurements. 3. This monitoring system can transfer the data by radio modem. Additionally, this system can monitor hydrological conditions in real time. 4. The hardware was made of several modules with an independent CPU. They can be mounted, removed, repaired and added to. Their function can be changed and expanded. 5. These are the result of an accuracy test, the values of temperature, EC and pH measured within an error range of ${\pm}0.2^{\circ}C$, ${\pm}1{\mu}S$ and ${\pm}0.1pH$ respectively. 6. This monitoring system proved to be able to measure various factors for a forest hydrological environment in various experimental stations.

  • PDF