• Title/Summary/Keyword: water leachate

Search Result 321, Processing Time 0.037 seconds

A Study on the Adsorption of Organophosphorus Pesticides Applying Sewage Sludge to Soil Amendment (하수슬러지의 토양개량재 적용시 유기인계 농약의 흡착 능력에 관한 연구)

  • 임은진;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.95-103
    • /
    • 2004
  • This study has been assessed the influence of applying sewage sludge to soil amendments on the sorption properties, and leaching potential of three commonly used organophosphorus pesticides, Diazinon, Fenitrothion, and Chlorpyrifos. A sandy soil with a low content of organic carbon was treated with sewage sludge with a ratio sandy soil sludge ratio of 30:1. The sorption was determined with the batch equilibrium technique. The sorption isotherms could be described by Freundlich equation. The Freundlich constant, K value which measures sorption capacity, were 3.97, 9.94, 22.48 for Diazinon, Fenitrothion, Chlorpyrifos in non-amended soil. But in amended soil, K value was 12.58, 28.47, and 61.21 for Diazinon, Fenitrothion, and Chlorpyrifos. The overall effect of sewage sludge addition to soil was to increase pesticides adsorption, due to the high sorption capacity of the organic matter. The effect of sludge on the leaching of pesticides in the soil was studied using packed soil columns. Total recoveries of pesticides in soil and leachate with leaching in soil column, were in the range of about 73∼84%, was reduced with the passage of time. Diazinon moved more rapidly than Chlorpyrifos in the unamended soil due to greater sorption and lower water solubility of Chlorpyrifos. Total amounts of pesticides leached from the sewage sludge amended soils were significantly reduced when compared with unamended soils. This reduction may be mainly due to and increase in sorption in amended soils, as a consequence of the increase in the organic matter content.

Adsorption-Desorption, Leaching, and Degradation Pattern of Fungicide Fluazinam in the Soil Environment (살균제 Fluazinam의 토양환경 중 흡.탈착, 용탈 및 분해양상)

  • Hu, Won;Lee, Seog-June;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.128-133
    • /
    • 1997
  • This study was conducted to evaluate the adsorption, desorption, leaching and degradation pattern of fungicide fluazinam in the soil environment under the laboratory conditions. The mode of isothermal adsorption of fluazinam in soil was coincident with the Freundlich equation. The adsorption amount of fluazinam was much higher on soils containing organic matter than on soils oxidized with hydrogen peroxide. The presence of organic matter, humic acid or fulvic acid, increased the adsorption amount of fluazinam on soils. The Freundlich constant K was much higher in soil added with humic acid than in soil added with fulvic acid. The desorption ratio of fluazinam adsorbed to soil was increased by removal of organic matter. In leaching experiment using soil column, the fluazinam applied on the soil surface was not moved down to the bottom of soil and was not detected in leachate water. The degradation of fluazinam was faster in Soil I with rich organic matter than Soil II with poor organic matter, in non-sterilized soil than sterilized soil, and in flooded soil than unflooded soil.

  • PDF

Toxic Effects of Aluminium on Freshwater Animals: Review (알루미늄이 수생동물에 미치는 독성에 관한 소고)

  • Park, Chan Jin;Kim, Dae Han;Han, Sang Ho;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.271-285
    • /
    • 2014
  • Aluminum flows into the river from the abandoned mine leachate, industrial wastewater, and sewage and is responsible for acute toxicity in aquatic organisms. Recently, the number of reports have indicated the increased toxicity in a variety of aquatic organisms' due to the aluminum toxicity. In this study, we reviewed the toxicity of aluminum on aquatic invertebrates, fishes and amphibians and suggested the guideline for management of aluminum residues in aquatic environment and strategies for aluminum toxicity evaluation. In aquatic animals aluminum complexes evoke gill dysfunction primarily, the cytotoxicity, genotoxicity, oxidative stress, disruption of endocrine function, reproductive success, metabolism and homeostasis. Notably, at environmentally relevant concentration, aluminum complex can alter the hormone levels in fish in acidic condition. Further, since the solubility of aluminum is higher in the acidic and basic conditions, thus it is likely that the toxic effects of aluminum may not only occur in acidic water near the abandoned mines but also in lakes and rivers, where pH is raised by algal bloom.

Behaviors of Chloronicotinyl Insecticide Acetamiprid in Soil (Chloronicotinyl계 살충제 Acetamiprid의 토양 환경중 동태)

  • Hong, Min-Kee;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • This study was conducted to evaluate the degradation, adsorption and desorption and leaching of acetamiprid in soils. The half-life of acetamiprid in field condition was $1.7{\sim}3.3$ days in Bokhyun soil and, in case of laboratory condition, 15.5 days. Adsorption of acetamiprid was equilibrated in 12 hours incubation. In adsorption experiment using modified soils, such as oxidized soil, oxidized soil added humic acid, fulvic acid, kaolinite or montmorillinite, adsorption rate of acetamiprid was the highest in the oxidized soil added fulvic acid. The desorption rate was the lowest in the oxidized soil added fulvic acid. The adsorption and desorption results should be suggested that acetamiprid could be strongly adsorbed with soil humic materials, especially fulvic acid. When the mobility of acetamiprid in soil was calculated according to GUS (Groundwater Ubiquity Score) equation, it was prove to non-leacher, and it was confirmed in the leaching experiment with soil column. Most of acetamiprid was remained in the upper 30 cm of the soil column after eluting with water and it was not even detected in leachate.

  • PDF

Organic Wastewater Treatment Using Modified Fenton's Oxidation (변형 펜턴산화법을 이용한 유기폐수의 처리)

  • Kim, Ji Yeon;Yoon, Tai Il;Park, Se Jin
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1999
  • Fenton's oxidation can improve the biodegradability of refractory organic wastewater by generating $OH{\cdot}$ which is one of the most reactive species. Fenton's reagent is used to treat a variety of industrial waste containing a range of toxic organic compounds. But this process cannot be economical because of high chemical cost of $H_2O_2$, ferrous ion solution and high sludge disposal cost. In this study, we proposed a modified Fenton's oxidation process which can reduce the reagent cost and obtain better removal efficiencies with less Fenton's reagents, and have a good potential of sludge recycling. In modified Fenton reaction, ferrous ion solution is adjusted to optimal pH with NaOH. Then it added to the sample and reacted to $H_2O_2$. For the experiment, synthetic wastewater made of phenol, which is one of the typical water pollutants, was used and the ionic strength of this wastewater was controlled by adding $NaHCO_3$. The effects of DO, ionic strength, and $H_2O_2$ dosing methods were investigated. As a result, modified Fenton's treatment efficiencies are better than conventional Fenton's reaction treating leachate and dyeing wastewater. And modified Fenton's treatment efficiencies combined to the sludge recycling for a half of Iron dosage are as good as the conventional Fenton's for a normal Iron dosage.

  • PDF

Effect of Gypsum Application on Reducing Methane (CH4) Emission in a Reclaimed Coastal Paddy Soil (간척지 논 토양 개량제로서 석고처리가 메탄 배출량 저감에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • BACKGROUND: Gypsum($CaSO_4{\cdot}2H_2O$) is known as an ideal amendment to improve soil quality of the reclaimed coastal land. Since gypsum has very high concentration of electron acceptor like ${SO_4}^{2-}$, its application might be effective on reducing $CH_4$ emission during rice cultivation, but its effect has not been studied well. METHODS AND RESULTS: The effect of gypsum on $CH_4$ emission and rice growth characteristics was studied by pot test, which was packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Chemical-grade gypsum was applied in two soils having EC 2.25 and 9.48 dS/m at rates of 0, 0.5, 1.0 and 2.0%(wt/wt). $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. $CH_4$ emission rate was significantly decreased with increasing salt accumulation and gypsum application levels. With increasing gypsum application, dissolved ${SO_4}^{2-}$ concentration in the leachate water was significantly increased, which might have suppressed $CH_4$ production in soil. Total $CH_4$ flux was dramatically decreased with increasing gypsum application. In contrast, rice yield was increased with increasing gypsum application and then achieved maximum productivity at 1.0% gypsum application in two soils. CONCLUSION(s): Gypsum is a very good soil amendment to suppress $CH_4$ emission in reclaimed coastal paddy soils, and improve rice productivity and soil properties. The optimum application level of gypsum is assumed at ca. 1% to improve soil productivity with reducing effectively $CH_4$ emission during rice cultivation.

Behavior of Synthetic Layered Double Hydroxides in Soils (인공합성된 Layered Double Hydroxides의 토양중 행동)

  • Choi, Choong-Lyeal;Seo, Yong-Jin;Lee, Dong-Hoon;Kim, Jun-Hyeong;Yeou, Sang-Gak;Choi, Jyung;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.412-417
    • /
    • 2007
  • This study was to elucidate the effects of layered double hydroxides(LDHs) application on the chemical properties of the soils along with the fate of the applied LDHs. The effects of LDHs application were compared with those of calcium carbonate widely used for the neutralization of acidic soils. Incorporation of LDHs into the soil resulted in higher pH value and $Mg^{2+}$ content in soil leachate than that of $CaCO_3$ treatment. There was no significant difference in water-soluble P content in both the treatments. However, $Al^{3+}$ and $Si^{4+}$ contents were decreased by LDHs and $CaCO_3$ treatment, even though a large amount of $Al^{3+}$ was released into soil solution with the disintegration of LDHs framework. LDHs structure in soil was gradually disintegrated from the its original layered structure under acidic condition of soil. Therefore, this study suggests that LDHs could be utilized as a carrier of functional substances to enhance the efficiency of various ago-chemicals without any ill effects on the soil environments.

Characteristics of Mine Liner According to the Replacement Ratio of Nano-Silica and Silica-Fume (나노실리카 및 실리카흄 대체율에 따른 차수재의 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Nam, Seong-Young;Kim, Chun-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.66-73
    • /
    • 2019
  • Approximately 80% of the mines are vacated or abandoned mines and are mostly left without suitable environmental treatment facilities. In the area around the abandoned mine site, problems such as drainage of acidic city drainage and leakage of leachate occur, and ground subsidence caused by this can cause a safety accident due to sink hole occurrence. In this study, flow, compressive strength, water uptake, pore and hydration characteristics were investigated to investigate the basic properties of liner and cover material based on the replacement ratio of nano silica and silica fume in the existing blast - furnace slag fine powder. As a result, as the substitution ratio of nano silica and silica fume increased, the flow and compressive strength of nano silica specimens increased and the absorption rate decreased. In the case of pore characteristics, the amount of pores decreased as the substitution ratio of nano silica and silica fume increased. Especially, the capillary porosity of 10-1,000 nm diameter decreased. Ray diffraction analysis and SEM measurement showed that the peak positions of the hydration products were almost the same when compared with the 5% alternative test samples of Plain and silica fume.

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Leaching of Organophosphorus and Carbamate Pesticides in Soil Column and Prediction of Their Mobility Using the Convective Mobility Test Model in Soils (유기인계 및 카바메이트계 농약의 토주용탈과 대류이동성 모형에 의한 이동성 예측)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Lee, Hee-Dong;Oh, Byung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This study was conducted to investigate the downward mobility of pesticides using soil columns and to compare the experimental results with values predicted from Convective mobility test model. Nine pesticides such as metolcarb, molinate, fanobucarb, isazofos, diazinon, fenitrothion, dimepiperate, parathion and chlorpyrifos-methyl were used for leaching test in soil column for four soils; Jungdong (upland soil), Gangseo (paddy soil), Yesan (forest soil), and Sineom(upland, volcanic ash-derived soil) series. The peak concentrations leached from 10 cm-columns of three soils except Sineom series ranged 6.5 to 12.6 mg/L for metolcarb, 2.6 to 5.0 mg/L for molinate, 4.5 to 7.8 mg/L for fenobucarb, 0.39 to 1.36 mg/L for dimepiperate, 1.1 to 4.6 mg/L for isazofos, 0.01 to 0.14 mg/L for diazinon, lower than 0.01 to 0.70 mg/L for fenitrothion and lower than 0.01 to 0.44 mg/L for parathion. But chlorpyrifos-methyl was not leached from any soil columns. Elution volumes to reach the peak of metolcarb, molinate, fenobucarb, isazofos, diazinon, and dimepiperate in the leachate ranged 1.1 to 2.1 pore volume (PV), 1.6 to 3.3 PV, 1.6 to 3.3 PV, 2.1 to 4.4 PV, 6 to 15 PV, and 8 to 21 PV, respectively. On the same water flux conditions, convection times estimated by Convective mobility test model were coincided with results from soil column test in most of the soil-pesticide combinations applied. Based on convection times estimated by the model at standard conditions (water flux 1 cm/day), metolcarb was classified as most mobile, molinate, fenobucarb and isazofos as mobile or most mobile, dimepiperate as moderately mobile or mobile, diazinon as mobile, fenitrothion and parathion as slightly mobile or mobile and chlorpyrifos-methyl as immobile or slightly mobile.